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Abstract. We study a new model of verification of boolean predicates over distributed networks.
Given a network configuration, the proof-labeling scheme (PLS) model defines a distributed proof
in the form of a label that is given to each node, and all nodes locally verify that the network
configuration satisfies the desired boolean predicate by exchanging labels with their neighbors. The
proof size of the scheme is defined to be the maximum size of a label.
In this work, we extend this model by defining the approximate proof-labeling scheme (APLS) model.
In this new model, the predicates for verification are of the form ψ ≤ ϕ, where ψ,ϕ : F → N for a
family of configurations F . Informally, the predicates considered in this model are a comparison
between two values of the configuration. As in the PLS model, nodes exchange labels in order to
locally verify the predicate, and all must accept if the network satisfies the predicate. The soundness
condition is relaxed with an approximation ration α, so that only if ψ > αϕ some node must reject.
We show that in the APLS model, the proof size can be much smaller than the proof size of the same
predicate in the PLS model. Moreover, we prove that there is a tradeoff between the approximation
ratio and the proof size.

Keywords: Distributed graph algorithms, Distributed verification, Approximation algorithms,
Primal-dual algorithms

1 Introduction

1.1 Context and Objective

Verification of a given property in decentralized systems finds applications in various domains, such as,
checking the result obtained from the execution of a distributed program [5,20], establishing lower bounds
on the time required for distributed approximation [11], estimating the complexity of logic required for
distributed run-time verification [21], general distributed complexity theory [19], and the construction of
self stabilizing algorithms [8, 26].

In the distributed setting, a network configuration Gs is represented by an underlying graph and a
state assignment. The underlying graph has nodes and edges, where each node represents a processor and
each edge represents a communication link between two processors. The state assignment is the state
of each node, which can contain a unique identifier, edge weights, a specified subset of incident edges,
an output of a distributed algorithm and more. In order to verify that a network configuration has a
specified property, nodes exchange messages along the edges and output either TRUE or FALSE depending on
whether the local configuration is consistent with a legal state of the network. The distributed verification
process is correct if all nodes return TRUE on legal configurations, and on every illegal configuration at least
one node returns FALSE. Some properties are local by nature and easy to verify, for example, whether a
specified subset of edges is a matching in the graph. However, many other properties cannot be verified in
less than diameter time, even if message size and local computational power are unbounded, for example,
whether a specified matching is of maximum cardinality.

In order to cope with strong time lower bounds, Korman, Kutten, and Peleg [27] have introduced
a computational model, called proof-labeling schemes (PLSs), where nodes are given auxiliary global
information in the form of labels. A proof-labeling scheme for a predicate P consists of a prover and a
verifier. For every legal state of the network, the prover assigns a label to every node. The verifier is a
distributed algorithm, which uses one round of communication to exchange labels between neighbors
and output TRUE or FALSE at each node, as a function of the state and label of the node and the labels it
receives from its neighbors. A PLS satisfies completeness if for every legal configuration, with the labels
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Approximation Ratio Upper Bound Lower Bound

Exact O (n logn) (Section 3) Ω (n/k) (Theorem 1)
3/2− ε Ω

(
n/ log2 n

)
(Theorem 3)

3/2 O
(√
n log2 n

)
(Theorem 2)

2 O (logn) (Theorem 4)

Table 1. APLS for (D ≤ k) on general graphs—upper and lower bounds on proof size.

assigned by the prover, all nodes output TRUE, and it satisfies soundness if for every illegal configuration
and every label assignment, some node outputs FALSE.

The complexity measure used in evaluating the quality of a PLS is the maximum size of a label, which
is called the proof size. It is known that, for every sequentially decidable graph property, there exists
a PLS with proof size O(m log n) where n is the number of nodes and m is the number of edges in the
network [6,22,27]. For some properties, lower bounds on the proof size have been proven in this model, for
example Ω(log n) for verification of a spanning-tree [27] and bi-connectivity [6], Ω(n2/ log n) for verifying
that the graph is not 3-colorable [22], and Ω(log2 n) for verification of a minimum-weight spanning-tree [25],
assuming that the maximal edge-weight W satisfies log n < W ≤ nc for some constant c.

As in the computational framework, variations of the model may allow us to break known lower
bounds. It has been suggested to use super-constant number of rounds in verification [7,26]. In the former,
a linear reduction of proof size is proven for acyclicity and the universal scheme. In the latter, they
present a scheme for minimum-weight spanning-tree with O(log n) proof size and O(log2 n) rounds. In [6]
it was suggested to distinguish between labels and communication in the verification process, and to use
randomization in order to reduce the communication complexity of verification. They show an exponential
reduction in the communication complexity of every scheme at the cost of increasing the proof size by a
factor of the maximum degree.

Yet, some properties are still harder. In Section 3 we show that any PLS for D ≤ k must have labels
of Ω(n) bits, where D is the diameter of the graph and k ∈ N is a constant. A natural way to circumvent
this lower bound is through approximation, e.g., by defining a 2-approximation for the problem by the
predicate D ≤ 2k, and hoping for smaller proof size. However, this approach is bound to fail: any PLS
for D ≤ 2k is also a PLS for D ≤ k′, for k′ = 2k, so the same lower bound holds for this definition of
approximation.

Inspired by the above example, we present and investigate a new concept of approximate proof-labeling
schemes (APLSs for short) for optimization problems. Let ψ,ϕ : F → N be two functions from a family
of configurations to the natural numbers. Assume that we are interested in verifying for every Gs ∈ F
whether ψ(Gs) ≤ ϕ(Gs), and let α > 1 be the approximation ratio. If ψ(Gs) ≤ ϕ(Gs) then there is
an assignment of labels such that all nodes output TRUE, and if ψ(Gs) > αϕ(Gs) then for every label
assignment at least one node outputs FALSE. If ϕ(Gs) < ψ(Gs) ≤ αϕ(Gs), we do not have any promise. Put
differently, we are promised that if all nodes output TRUE, then ψ(Gs) ≤ αϕ(Gs), i.e., the approximation
holds. This concept indeed allows us to find schemes with shorter labels: we show a 2-APLS for D ≤ k
with proof size of only O(log n) bits, and a 3/2-APLS for D ≤ k with proof size of O(

√
n log2 n) bits.

1.2 Our Contribution

In this paper we introduce and formalize the concept of approximate proof-labeling schemes. We study
the complexity of verification of two fundamental problems in this model: diameter and maximum weight
matching. We start by considering the verification of a specified upper bound k on the network diameter
D (see summary of results in Table 1), and show that for every k = k(n), the proof size of any PLS
for D ≤ k is Ω(n/k). In the APLS model, as outlined above, we present a 3/2-APLS for D ≤ k with
O(
√
n log2 n) proof size, and prove that we cannot obtain a better approximation ratio with the same

asymptotic proof size. Specifically, we prove that for every k there exists an ε ∈ Θ(1/k) such that the
proof size of any (3/2− ε)-APLS for D ≤ k is Ω(n/ log2 n). Then, we turn to show that if we increase
the approximation ratio we can construct an even more efficient scheme. In particular, we show a simple
2-APLS for D ≤ k with proof size O(log n). To our knowledge, the problem of verifying an upper bound
on the diameter in general graphs has not been studied before in the context of PLSs.

The second property we consider is verifying that a specified matching M have the maximum possible
weight (see summary of results in Table 2). For this property we are interested in bounding from below the
weight of the matching w.r.t. the weight of the maximum matching w(MWM). We present a 2-APLS for
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Approximation Ratio Graph Family Upper Bound Lower Bound

Exact Paths O (logn+ logW ) [27]
Exact Bipartite O (logW ) [22]
2 Trees O (logn+ logW ) [27]
2 Any graph O (logW ) (Theorem 6)
Any Any graph Ω (1) (Section 4)

Table 2. APLS for (w(M) ≥ w(MWM))—upper and lower bounds on proof size.

w(M) ≥ w(MWM) with O(logW ) proof size, where W is the maximum edge-weight in the network. This
improves upon a previous result presented in [27], with O(log n+ logW ) proof size for a 2-approximation
of the maximum weight matching on trees. We note that the notion of approximation in [27] is different
from our definition: they argue that there exists a subset of 2-approximated configurations that the scheme
verifies, but do not promise that any configuration with an optimal matching is verified successfully.

We use various techniques to obtain our results. The lower bounds for proof complexity are achieved
using reductions for nondeterministic communication complexity [22], a lower bound graph presented
in [23] and a recent constructions of [1]. The design of the APLSs is based on approximation algorithms
for the diameter problem [2], and on complementary slackness conditions for primal-dual problems.

1.3 Related Work

Approximation algorithms were studied extensively in both sequential and distributed computing. In the
sequential model, unless P = NP, there are no polynomial-time algorithms for NP-hard problems, and
thus efficient approximation algorithms for the related optimization problems are widely studied [31].
Moreover, even for problems for which polynomial time algorithms exist, there is sometimes a need for
faster algorithms that give an approximate solution.

One example is the problem of determining the diameter of a graph. While the problem is solvable in
polynomial time, faster approximation algorithms are studied. A trivial 2-approximation algorithm in
unweighted graphs goes through building a single BFS tree in O(n+m) time, and measuring its depth.
An Õ(m

√
n + n2) time 3/2-approximation algorithm for the diameter was presented in [2], and was

later improved in [30] to Õ(m
√
n) time algorithms using randomization. A deterministic improvement

to [2] was presented in [9]. Distributed algorithms for computing the diameter were presented in [23]
and [29], and both also provide approximation algorithms for the problem. Lower bounds on computing
and approximating the diameter in the CONGEST model were presented in [1, 24].

Distributed decision and verification schemes deal with verifying that a given instance satisfies some
given boolean predicate. Distributed decision and verification has been formalized in various models to
suit its myriad applications. These models include proof-labeling schemes (PLSs) [27], locally checkable
proofs (LCP) [22], and several complexity classes [19]. The complexity classes presented in the latter
include LD—local decision—which includes all properties that can be decided using a constant number
of rounds and no additional information, and NLD—non-deterministic local decision—which includes
all properties that can be decided in a constant number of rounds with additional information in the
form of a certificate given to each node. While NLD and PLS are closely related, they differ in that NLD
certificates are independent of node identifiers. Since PLS labels may depend on node identifiers, there is
a PLS for every sequentially decidable property on ID based networks, while not all sequentially decidable
properties are in NLD. For more details, we refer the reader to a survey of this field of research [12].

The concept of PLS was introduced by Korman, Kutten, and Peleg in [27]. Among other results, they
show a Θ(log n) bound on the proof size of the diameter of trees, and the same bound also for the proof
size of a lower bound on the diameter in general graphs. In addition, they present two O(log n+ logW )
schemes to verify a maximum weight matching: one on paths, and the other is a 2-approximation of
maximum weight matching on trees.

Since the introduction of proof-labeling schemes, many aspects of this mechanism were studied.
Schemes where nodes may communicate to a constant distance that is greater than 1 were studied in [22].
For the maximum cardinality matching problem, they show that the proof size on the family of bipartite
graphs is Θ(1), and on the family of cycle graphs is Θ(log n). For maximum weight matching, they present
a scheme for the family of bipartite graphs, with O(logW ) proof size, using techniques similar to the
ones we use. Moreover, [22] was the first to use nondeterministic communication complexity lower bounds
in order to achieve lower bounds on the verification complexity of a PLS.
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Schemes with super-constant verification time were presented in [26]. Verification processes in which
the global result is not restricted to be the conjunction of local outputs had been studied in [3,4]. The role
of unique node identifiers in local decision and verification was extensively studied in [16–18]. The use of
randomization in verification process in order to reduce communication was presented in [6]. Proof-labeling
schemes in directed networks were studied in [14], where both one-way and two-way communication over
directed edges had been considered. Verification schemes for dynamic networks, where edges may appear
or disappear after label assignment and before verification, were studied in [15]. Finally, a hierarchy of
local decision as an interaction between a prover and a disprover was presented in [13].

2 Model and Definitions

2.1 Computational Framework

A network is modeled by a connected, undirected, simple graph G = (V,E), with |V | = n nodes and
|E| = m edges. Each node represents a processor, and each edge represents a communication link. We
do not assume the a processor initially knows to which other processors it is connected, but only that
its communication links are enumerated by port numbers. A configuration Gs is graph G = (V,E) along
with a state assignment function s : V → S, where S is called the state space. The state s(v) of a node
v includes all local input to v. In particular, the state includes port numbers of adjacent edges, the
node’s identity (if the network is not anonymous) or other data, e.g., the result of an algorithm. We
sometimes consider weighted networks, in which the graph is accompanied with an edge weight function
w : V → {1, . . . ,W}, in which case the state of a node includes the weights of its adjacent edges.3

In this work, we always assume non-anonymous networks, i.e., every node v is provided with a unique
identity ID(v), which is part of the state of v.

2.2 Proof-Labeling Schemes

Given a family F of network configurations and a boolean predicate P over F , a proof-labeling scheme
(PLS ) for (F ,P) is a mechanism for deciding P(Gs) for every Gs ∈ F . A PLS consists of two components:
a prover p, and a verifier v. Given any legal configuration Gs ∈ F (i.e., a configuration satisfying P),
the prover assigns a bit string `(v) to every node v, called the label of v. The verifier is a local distributed
algorithm running concurrently at every node. At each node v, it takes as input the state s(v) of v, its
label `(v) and the labels of all its neighbors, i.e., the list (`(v1) . . . `(vd)), where d is the degree of v, and
vi is the neighbor of v reachable from port number i. The outputs of the verifier at each node is a boolean
value. If the outputs are TRUE at all nodes, v is said to accept the configuration, and otherwise (i.e., v
outputs FALSE in at least one node) v is said to reject the configuration. For correctness, a PLS (p,v) for
(F ,P) must satisfy the following requirements, for every Gs ∈ F :

– If P(Gs) = TRUE then, using the labels assigned by p, the verifier v accepts Gs.
– If P(Gs) = FALSE then, for every label assignment, the verifier v rejects Gs.

The proof size of a PLS (p,v) is the maximum length of a label assigned by the prover p on a legal
configuration Gs ∈ F .

2.3 The New Model: Approximate Proof-Labeling Schemes

In this paper we focus on predicates that represent minimization or maximization problems. Formally,
we are given two functions ψ,ϕ : F → N, and we are interested in the predicate ψ(Gs) ≤ ϕ(Gs). Note
that ψ or ϕ may be constant, e.g., in verifying an upper bound on the diameter of the graph, one can be
interested in verifying D(Gs) ≤ k. In some cases, classic verification might be too expansive, as proven in
Section 3, and so we extend the definition of PLSs to approximate proof-labeling schemes (APLSs). We
relax the requirements of a PLS so that a configuration for which the inequality ψ(Gs) ≤ ϕ(Gs) holds is
guaranteed to be accepted by the scheme, while a configuration for which ψ(Gs) much larger than ϕ(Gs)
is guaranteed to be rejected. Formally, for α ≥ 1, an α-APLS (p,v) for (F , (ψ ≤ ϕ)) must satisfy the
following requirements, for every Gs ∈ F :
– If ψ(Gs) ≤ ϕ(Gs) then, using the labels assigned by p, the verifier v accepts Gs.
– If ψ(Gs) > αϕ(Gs) then, for every label assignment, the verifier v rejects Gs.

3Recall that W is the maximum weight of an edge in the graph. If W = 1, we interpret O(logW ) as O(1).
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The proof size of an APLS is defined similarly to that of a PLS. Our definitions naturally extend to
predicates of the form ψ ≥ ϕ, ψ < ϕ and ψ > ϕ.

Finally, we note that although the definition of an APLS might seem to resemble definitions from the
field of property testing, they are inherently different. Our measure for how close a graph is to satisfy a
property is entirely algebraic, and has nothing to do with changing the graph by adding or removing
edges. Moreover, all schemes presented in this paper are deterministic.

2.4 Problem Definitions

Diameter. Given a configuration Gs with an underlying graph G = (V,E) and an edge weight function w,
for every two nodes u, v ∈ V denote by dist(u, v) the length of the shortest (unweighted) path between u
and v in Gs, and by distw(u, v) the minimum weight of a path between u and v in Gs. The unweighted
diameter of Gs, denoted by D(Gs), is defined as max {dist(u, v) | u, v ∈ V }. Similarly, The weighted
diameter of Gs, denoted by Dw(Gs), is defined as max {distw(u, v) | u, v ∈ V }.

The first set of problems we consider in this work are problems of bounding the weighted and
unweighted diameters from above.

Definition 1. Let F be the family of all weighted connected undirected configurations and let Gs ∈ F .
For every integer k = k(n), we define the problems (F , (D ≤ k)) and (F , (Dw ≤ k)).

A breadth-first search (BFS) tree in a weighted or unweighted graph Gs from a root r ∈ V is a tree
consisting of a shortest (unweighted) path from r to every node in V . If the graph is weighted, we are also
interested in a shortest weighted distance tree consisting of a shortest weighted path from a root node r
to every node in V . Throughout the paper, we use known schemes for verification of a BFS tree and a
shortest weighted distance tree [27]. They prove that for the verification of these trees it is enough to give
every node the identity of the root and the distance from the root. Therefore, proof size is O(log n) for a
BFS tree and O(log n+ logW ) for a shortest weighted distance tree.

Matchings. Given a configuration Gs with an underlying graph G = (V,E), an edge weight function w,
and an edge subset M ⊂ E, M is a matching in G if no two edges in M share a node. The weight of a
matching M , denoted by w(M), is the sum of weights of all edges in M . We say that a matching M is a
maximum weight matching (MWM) if w(M) ≥ w(M ′) for every matching M ′ in G.

Another problem we consider, of a different flavor, is to verify that a specified matching is a maximum
weight matching.

Definition 2. Let FM be the family of all weighted connected undirected configurations with a specified
matching M . Let Gs ∈ F and let MWM be a maximum weight matching in Gs. We define the problem
(FM , (w(M) ≥ w(MWM))).

Note that although w(M) > w(MWM) is not possible (since M is promised to be a matching), the
problem is defined to follow the structure of APLSs.

2.5 Two-Party Communication Complexity

Given two vectors x, y ∈ {0, 1}s, we say the vectors are not disjoint, and write DISJ(x, y)=FALSE, if there
exists an index i ∈ [s] such that xi = yi = 1. Otherwise, the vectors are disjoint, and DISJ(x, y)=TRUE. In
the Set-Disjointness two-party communication problem, two players denoted Alice and Bob are given two
vectors, x, y ∈ {0, 1}s respectively, and they need to decide whether DISJ(x, y)=TRUE or DISJ(x, y)=FALSE.
(See [28] for complete definitions and discussion.)

Given their inputs, the players communicate by a deterministic protocol, and eventually output
DISJ(x, y)=TRUE or DISJ(x, y)=FALSE. A well known result in communication complexity asserts that
in any protocol, Alice and Bob must exchange Ω(s) bits in order to correctly determine the value of
DISJ(x, y).4

In the nondeterministic case of the problem, Alice and Bob use auxiliary bit strings, which each
of them nondeterministically chooses, and then run a deterministic protocol in order to determine the
value of DISJ(x, y). We are interested in the best assignment of auxiliary strings, i.e. the one that allows
the players to minimize the number of bits exchanged. For example, if DISJ(x, y)=FALSE and Alice and
Bob both use the index i such that xi = yi = 1 as an auxiliary string, then they only need to exchange
O(log s), to verify they have the same index. On the other hand, a celebrated result [28] asserts that when
DISJ(x, y)=TRUE, Alice and Bob must communicate Ω(s) even with an optimal assignment of auxiliary
strings, i.e. nondeterminism cannot help Alice and Bob in asymptotically minimizing the communication.

4This lower bound holds also for randomized protocols, which we do not discuss in this work.



6 Censor-Hillel et al.

3 PLS and APLS for Diameter

Verifying that the diameter of the graph is bounded from above by a specified value can be done by a
PLS with O(n log n) proof size (and O(n(log n+ logW )) for weighted diameter). Simply construct a BFS
tree (respectively, a shortest weighted distance tree) from every node, verify it and locally verify at each
node that all of its distances are bounded by the specified value. We now show that in the PLS model,
for a constant bound k, the proof size cannot be improved by more than a Θ(log n) factor, i.e., it must
have an Ω(n) proof size. Moreover, for every k = k(n), we show a lower bound for the PLS proof size.

Let s = n
k − 1, and assume s is an even integer. Consider the following graph family {Gx,y} over the

following set of n nodes. Let A1 = a1, ..., as/2, A2 = as/2+1, ..., as, B1 = b1, ..., bs/2, and B2 = bs/2+1, ..., bs
be four cliques, where each ai is connected to bi with a path of length k− 1, consisting of ai, bi, and k− 2
new nodes unique to this path. An additional node a is connected to every ai by an edge, an additional
node b is connected to every bi by an edge, and there is a (k − 1)-node path connecting a and b with
another new k − 2 nodes. Given an instance (x, y) of the Set-Disjointness problem over (s/2)2 elements,
enumerate Alice’s input as xij with i ∈ {1, . . . , s/2} and j ∈ {s/2 + 1, . . . , s}, and similarly for Bob’s
input, yij . To complete the construction of Gx,y, add an edge (ai, aj) if and only if xij = 0, and we add
an edge (bi, bj) if and only if yij = 0.

If n
k − 1 is not an even integer, we choose s to be the largest even integer such that s < n

k − 1, add
nodes to described construction to complement the number of nodes to n, and connect all additional
nodes to all neighbors of b.

a1

a2

a3

a5

a4

a6 b6

b5

b4

b3

b2

b1

x16 = 1

x34 = 0

y16 = 1

k − 1 edges

k − 1 edges

k − 1 edges

k − 1 edges

k − 1 edges

k − 1 edges

k − 1 edges

y =




0 0 1
0 0 0
1 1 1


x =




0 1 1
1 1 1
0 0 0




a b

Fig. 1. The diameter lower bound construction for s = 6.

Here, x =
(

0 1 1
1 1 1
0 0 0

)
and y =

(
0 0 1
0 0 0
1 1 1

)
, where the matrix rows are indexed by {1, 2, 3} and the columns by {4, 5, 6}.

Since x16 = y16 = 1, the dotted edges are missing and the distance between a1 and b6 is greater than k.

Lemma 1. D(Gx,y) ≤ k if and only if DISJ(x, y) = TRUE.

Proof. If DISJ(x, y) = TRUE, then for each {i, j}, at least one of the edges (ai, aj) or (bi, bj) exists in
Gx,y. Let u and v be any two nodes in Gx,y. Suppose that u is on the path (ai  bi) and v is on the
path (aj  bj), where i, j ∈ {1, . . . , s/2}. If i = j, clearly, dist(u, v) ≤ k − 1. Otherwise, by assumption,
either the cycle (a→ ai  bi → bj  aj → a) or the cycle (b→ bj  aj → ai  bi → b) exists and its
length is 2k + 1. Hence, every two nodes in the cycle are at distance at most k from each other, and
dist(u, v) ≤ k. Suppose now that either u or v is on the path (a b) and the other node is on the path
(ai  bi), i ∈ {1, . . . , s}. The length of the cycle (a→ ai  bi → b a) is 2k, and since u and v are on
this cycle, dist(u, v) ≤ k. Finally, if both u and v are on the path (a b), clearly, dist(u, v) ≤ k − 1, and
we conclude that D(Gx,y) ≤ k.
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If DISJ(x, y) = FALSE, then there exist i ∈ {1, . . . , s/2} and j ∈ {s/2 + 1, . . . , s} such that xij = yij = 1,
and by the construction of Gx,y, both edges (ai, aj) and (bi, bj) are absent. Every path from ai to bj must
go through some (a′  b′) path of length k − 1, and if dist(ai, bj) ≤ k then the shortest path connecting
ai and bj can only contain one more edge. However, since the edges (ai, aj) and (bi, bj) are both absent
in Gx,y, no such path exists, so dist(ai, bj) > k, which implies that D(Gx,y) > k.

Theorem 1. For every k, the proof size of any PLS for (F , (D ≤ k)) is Ω(n/k).

Proof. Consider any PLS for (F , (D ≤ k)), and construct a nondeterministic protocol for DISJ(x, y) as
follows. Alice and Bob simulate the verification of D(Gx,y) ≤ k using the PLS, such that Alice simulates
the nodes in A = A1 ∪ A2 ∪ a, and Bob simulates the rest of the nodes, denoted by B. Each of the
players nondeterministically chooses the labels of its nodes as his auxiliary bit-string. Alice and Bob then
exchange the labels corresponding to the nodes touching the cut, and simulate the verification process in
all nodes. Then, they compute a and b, the conjunction of the returned values of A and B respectively.
Finally, Alice sends a to Bob, Bob sends b to Alice, and they both output the conjunction a ∧ b as the
solution for DISJ(x, y).

If DISJ(x, y) = TRUE then D(Gx,y) ≤ k, there is an assignment of labels to the nodes such that all
nodes output TRUE, and if both players choose these labels as their bit-strings then they both output
DISJ(x, y) = TRUE. On the other hand, if DISJ(x, y) = FALSE then D(Gx,y) > k, for every assignment of
labels to the nodes at least one node outputs FALSE, and Alice and Bob output DISJ(x, y) = FALSE in all
executions.

Thus, the simulation we presented is a nondeterministic protocol for deciding DISJ(x, y). We know
that in any nondeterministic protocol for Set-Disjointness (s/2)2 elements, Alice and Bob must exchange
Ω((s/2)2) bits. The number of edges in the cut of Gx,y induced by the partition of the nodes between Alice
and Bob in the simulation is s+1. Therefore, the proof size of any PLS for (F , (D ≤ k)) is Ω(s) ∈ Ω(n/k).

We now show that in the APLS model there are schemes with much smaller proof size. We start with
a 3/2-APLS and construct a scheme that is based on the randomized algorithm for a 3/2-approximation
of the diameter presented in [30]. We use the following two lemmas.

Lemma 2. Let G = (V,E) be a graph, let S,N ⊆ V be two sets of nodes, and consider a node w ∈ V .
Assume that N is the set of z nodes closest to w for some parameter z, w is the farthest node from the set
S, and N ∩S is non-empty. Then, the largest depth D′ of a BFS tree rooted at a node in R = N ∪S∪{w}
satisfies 2

3D ≤ D′ ≤ D.

Lemma 3. Let G = (V,E) be a graph and z ∈ N a parameter. For each v ∈ V , let Nz(v) be the set of z
nodes closest to v. Then, there exists a hitting set for {Nz(v) | v ∈ V }, of size O(n log n/z).

Lemma 2 corresponds to an adapted version of Lemma 4 of [30], and Lemma 3 is a corollary of
Theorem 2.7 of [2]. We obtain the following result.

Theorem 2. There exists a 3/2-APLS for (F , (D ≤ k)) with proof size O(
√
n log2 n).

Proof. Our scheme is based on Lemma 2: it consists of a node w, sets N and S and all the BFS trees
rooted at R = N ∪ S ∪ {w}. In addition, there is a node w′ that is used to verify that the largest depth
of a BFS tree rooted in R is as claimed, and a BFS tree rooted at w′. The main task in our scheme is
to verify the BFS trees described above, and to verify that the diameter estimation, i.e., the maximum
depth of the trees, is at most k. Since a BFS tree verification is known from previous work, the challenges
in the scheme construction is to verify locally that w is indeed the farthest node from the set S, that N
is the neighborhood of w, and that the estimation is indeed the maximum depth of a tree.

Formally, let Gs ∈ F be a configuration with the underlying graph G = (V,E) and D(Gs) ≤ k. For
every v ∈ V , denote by N√n(v) the

√
n nodes closest to v (break ties according to IDs), and let S ⊂ V be

a set of O(
√
n log n) nodes such that S hits

{
N√n(v) | v ∈ V

}
, whose existence follows from Lemma 3.

Let h(v) = min {dist(v, u) | u ∈ S}, the distance of v from the set S, and let w be the farthest node
from S, i.e., h(w) ≥ h(v) for every v ∈ V . Let q(w) be the largest distance from w to any node in N√n(w).
Let R = S ∪ {w} ∪N√n(w) be a set of |R| = O(

√
n log n) nodes, and consider the set RBFS of BFS trees

rooted at nodes in R. Let dmax be the maximum depth of a tree in RBFS and let w′ be a node at distance
dmax from one of the roots.

The label assigned to a node v ∈ V is

`(v) = (`BFSs−S(v), `BFSs−N (v), `BFS−w(v), `BFS−w′(v), `hw(v), `qw(v), `max−dist(v))
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where `BFSs−S(v) is a set of O(
√
n log n) pairs {(ID(u),dist(v, u)) | u ∈ S}; `BFSs−N (v) is a set of

√
n pairs{

(ID(u),dist(v, u)) | u ∈ N√n(w)
}

; `BFS−w(v) = (ID(w),dist(v, w)); and `BFS−w′(v) = (ID(w′),dist(v, w′)).
Every pair mentioned above is the label needed in order to verify the correct structure of the corresponding
BFS tree. In order to verify that w is indeed the farthest node from S, every node is given the distance
of w from S, `hw(v) = h(w); To verify the consistency of N√n(w), every node is given the radius of
this neighborhood `qw(v) = q(w); and `max−dist(v) = dmax is given in order to verify the existence and
maximality of the estimation dmax.

In the verification process, a node v exchanges labels with all its neighbors, and verifies the following
conditions:

1. Consistency of global parameters: For every neighbor v′ of v, it holds that `hw(v′) = `hw(v), `qw(v′) =
`qw(v), and `max−dist(v

′) = `max−dist(v)
2. All distances are bounded by dmax and k: For every pair (ID, d) in `BFSs−S(v) ∪ `BFSs−N (v) ∪
{`BFS−w(v)} ∪ {`BFS−w′(v)}, it holds that 0 ≤ d ≤ `max−dist(v) ≤ k.

3. Existence of a BFS tree of depth dmax: If `BFS−w′(v) = (ID(v), 0) then there exists a pair (ID, d) ∈
`BFSs−S(v) ∪ `BFSs−N (v) ∪ {`BFS−w(v)} such that d = `max−dist(v).

4. Only one pair for each node in S and in N√n(w): For every two pairs (ID, d), (ID′, d′) ∈ `BFSs−X(v),

for X ∈ {S,N}, if d 6= d′ then ID 6= ID′.
5. BFS structures: For every neighbor v′ of v and X ∈ {S,N}, the following holds. There exists a pair

(ID, d) ∈ `BFSs−X(v), for some d if and only if there exists a pair (ID, d′) ∈ `BFSs−X(v′) with the
same ID and d′ ∈ {d− 1, d, d+ 1}. For x ∈ {w,w′}, `BFS−x(v) = (ID, d) for some d if and only if
`BFS−x(v′) = (ID, d′) for d′ ∈ {d− 1, d, d+ 1}.

6. Existence of roots: For every X ∈ {S,N} and pair (ID, d) ∈ `BFSs−X(v), if d > 0 then there exists a
neighbor v′ of v with (ID, d − 1) ∈ `BFSs−X(v′). For x ∈ {w,w′}, if `BFS−x(v) = (ID, d) and d > 0
then there exists a neighbor v′ of v with `BFS−x(v′) = (ID, d− 1).

7. Unique roots: For every pair (ID, d) in `BFSs−S(v) ∪ `BFSs−N (v) ∪ {`BFS−w(v)} ∪ {`BFS−w′(v)}, if
d = 0 then ID = ID(v).

8. Non-empty intersection of S and N√n(w): There exists a pair (ID, d) ∈ `BFSs−S(v) ∩ `BFSs−N (v).
9. Maximality and correctness of h(w): There exists a pair (ID, d) ∈ `BFSs−S(v) such that d ≤ `hw(v),

and if `BFS−w(v) = (ID(v), 0) then there exists no pair (ID, d) ∈ `BFSs−S(v) such that d < `hw(v).
10. The neighborhood of w: Let `BFS−w(v) = (ID, d). If d < `qw(v) then there exists a pair (ID(v), 0) ∈

`BFSs−N (v), and if d > `qw(v) then there exists no pair (ID(v), 0) ∈ `BFSs−N (v).

The completeness of this 3/2-APLS follows from the fact that if D(Gs) ≤ k then the maximum depth
of any BFS tree in Gs is at most k.

For the soundness, consider a configuration Gs ∈ F with the underlying graph G = (V,E) and label
assignment `, and assume that all nodes output TRUE. By (1), all nodes have the same values `hw, `qw and
`max−dist. By (4), (5), (6) and (7) for every node v ∈ V and every pair (ID, d) ∈ `BFSs−S(v)∪`BFSs−N (v)∪
{`BFS−w(v)} ∪ {`BFS−w′(v)}, there exists a node u such that ID = ID(u) and it holds that d = dist(v, u).

Let S(v) be the collection of IDs in `BFSs−S(v), let N(v) be the collection of IDs in `BFSs−N (v), let
w(v) be the ID in `BFS−w(v) and let w′(v) be the ID in `BFS−w′(v). By (5), for every two nodes v and u
it holds that S(v) = S(u), N(v) = N(u), w(v) = w(u) and w′(v) = w′(u). We denote these values by S,
N , w and w′ respectively. By (10), N is the set of closest nodes to w; by (9), w is the farthest node from
the set S; and by (8), there exists some node in the intersection of N and S. By (3), the collection of
pairs `BFS−w′(v) of all nodes v ∈ V indicates a BFS rooted at w0 with distance `max−dist to one of the
nodes in S ∪N ∪ {w}, and by (2) we know that this is the largest distance from any node to one of the
nodes in S ∪N ∪ {w} and this distance is at most k.

Overall, we have a collection of BFS trees with depth at most `max−dist ≤ k. Therefore, all conditions
of Lemma 2 are satisfied, and we have (2/3)D(Gs) ≤ `max−dist. Hence, D(Gs) ≤ (3/2)k as desired.

The proof size of the scheme follows from Lemma 3, which implies that there exists a set S of size
O(
√
n log n) that is a hitting set for

{
N√n(v) | v ∈ V

}
. In particular, the intersection N√n(w)∩ S, where

w is the farthest node from S, is not empty. Therefore, the label consists of O(
√
n log n) sub-labels of size

O(log n) each.

The following result shows that with the proof size we obtain for 3/2-APLS we cannot have a better
approximation ratio that is correct for all possible bounds k. To get a better approximation ratio, one
needs to use labels that are almost as large as the labels used for exact PLS.

Let x and y be two s-bit strings, s ∈ Ω(n/ log n). Our lower bound follows the recent construction of
Abboud et al. [1].5

5See Chapter 2.2 of [1]. We use P = b(k − 2)/4c.
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Lemma 4 ( [1]). Given two strings x, y ∈ {0, 1}s, there exists a graph Gx,y = (V,E) and a partition of
V into VA and VB such that:
1. The number of nodes in Gx,y is n ∈ Θ(s log s).
2. All the edges depending on x are between nodes in VA.
3. All the edges depending on y are between nodes in VB.
4. The number of edges between nodes in VA and VB is in Θ(log s).
5. If DISJ(x, y) = TRUE then D(Gx,y) ≤ k, and otherwise D(Gx,y) > 3k/2− 9.

From this construction we derive the following lower bound.

Theorem 3. For every k, there exists an ε ∈ Θ(1/k) such that the proof size of any (3/2− ε)-APLS for
(F , (D ≤ k)) is Ω(n/ log2 n).

Proof. Consider a (3/2− 9/k)-APLS for (F , (D ≤ k)), and an instance (x, y) of the DISJ problem over s
bits. Construct the graph Gx,y as in Lemma 4, with the same partition to VA and VB. Alice and Bob
nondeterministically choose the labels for the nodes of VA and VB, simulate the verification algorithm
together, and then compute a and b, the conjunction of the returned values of VA and VB . Finally, Alice
sends a to Bob, Bob sends b to Alice, and they both output the conjunction a ∧ b as the solution for
DISJ(x, y).

By Lemma 4, if DISJ(x, y) = TRUE then D ≤ k, all nodes must accept and Alice and Bob return TRUE.
On the other hand, If DISJ(x, y) = FALSE then D > (3/2− 9/k)k, at least one node rejects, and Alice
and Bob return FALSE. Thus, Alice and Bob correctly solve the Set-Disjointness problem over s elements.

Note that log n = Θ(log s). Alice and Bob must communicate Ω(s) = Ω(n/ log n) bits, and there are
O(log n) nodes touching the cut, so the proof size is Ω(n/ log2 n).

To further study the tradeoff between the approximation ratio and the proof size, we now prove that
if we increase the approximation ratio we can construct an even more efficient scheme.

Theorem 4. There exists a 2-APLS for (F , (Dw ≤ k)) with proof size O(log n+ logW ).

Proof. Let Gs ∈ F such that Dw(Gs) ≤ k, and let r ∈ V be some node. The label assigned to every
node v ∈ V is `(v) = (`dist(v), `root(v)), where `dist(v) = distw(r, v) and `root(v) = ID(r). To verify that
Dw(Gs) ≤ k, a node v exchanges labels with all its neighbors, and verifies the following conditions:

1. For every neighbor u of v, it holds that `root(u) = `root(v).
2. 0 ≤ `dist(v) ≤ k.
3. If `dist(v) > 0 then v has at least one neighbor u with `dist(u) = `dist(v)− w(u, v).
4. If `dist(v) = 0 then `root(v) = ID(v).

The completeness of this 2-APLS is clear: If Dw(Gs) ≤ k and labels are assigned as described above,
all nodes output TRUE.

For the soundness, consider a configuration Gs with label assignment `, such that all nodes output
TRUE. For a node v in the graph, follow the path from v constructed by repeatedly going from a node
v′ to its neighbor u with `dist(u) = `dist(v

′)− w(u, v′), whose existence is guaranteed by Condition (3).
By conditions (2) and (3), this path must end after traversing a weight of at most k, at a node r with
`dist(r) = 0, and this node is unique by conditions (1) and (4). As this claim can be applied to each node
in the graph, every two nodes in the graph are connected to each other by a path through r, of weighted
distance at most 2k, and Dw(Gs) ≤ 2k as desired.

The following corollary is a direct result of Theorem 4 for the unweighted case.

Corollary 1. There exists a 2-APLS for (F , (D ≤ k)) with proof size O(log n).

4 Maximum Weight Matching

Given a configuration Gs ∈ FM with the underlying graph G = (V,E), an edge weight function w, and a
specified matching M ⊂ E, we wish to verify (FM , (w(M) ≥ w(MWM))). Göös and Suomela [22] present
a PLS for this problem in bipartite graphs, using a linear programming (LP) formulation. Here, we extend
their technique to present a 2-APLS for (FM , (w(M) ≥ w(MWM))) on general graphs.

Our 2-APLS is simple: the label of a matched node is the weight of its matched edge, and the label
of an unmatched node is 0. The verification process, and the proof that this is indeed a 2-APLS are
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slightly more involved, and use a relaxation of the complementary slackness conditions of a relaxation of
a linear-programming formulation for the problem.

Consider the next integral-LP formulation of the MWM problem (cf. [10, Chapter 5]):

Maximize
∑

e∈E w(e)xe
Subject to

∑
{e|v∈e} xe ≤ 1, ∀v ∈ V

xe ∈ {0, 1} , ∀e ∈ E,

and the LP obtained by relaxing the integrality condition into:

xe ≥ 0, ∀e ∈ E.

The dual linear-program of the relaxed problem is

Minimize
∑

v∈V yv
Subject to yu + yv ≥ w(e), ∀e = (u, v) ∈ E.

Given a pair consisting of a primal and a dual feasible solutions, their optimality can be verified
by checking several conditions derived from the LP, conditions that are known as the complementary
slackness conditions. For the aforementioned LP, the conditions are:

xe > 0 =⇒ yu + yv = w(e), e = (u, v) ∈ E; and
yv > 0 =⇒ ∑

{e|v∈e} xe = 1, v ∈ V.

If G is bipartite, then any pair of feasible optimal solutions satisfy the complementary slackness
conditions, a fact that lies at the heart of the PLS presented by Göös and Suomela [22].

For general graphs, the same method fails miserably. The inherent obstacle that this approach faces is
the integrality gap of the LP formulation: a fractional solution to the problem may be twice as large as
the maximum integral solution. While there are LP formulations of the problem with an integrality gap
of 1, it is not clear how to translate them into a PLS, since the number of dual variables in these LPs is
substantially larger.

However, we observe that a relaxed version of these conditions is enough to prove that a primal
solution is an approximation of the MWM.

Theorem 5 (See [31, Section 15.1]). If x and y are feasible primal and dual solutions in a graph G
satisfying

xe > 0 =⇒ w(e) ≤ yu + yv ≤ 2w(e), e = (u, v) ∈ E; and
yv > 0 =⇒ ∑

{e|v∈e} xe = 1, v ∈ V,

then x is a 2-approximation of the MWM in G.

Unlike the case of bipartite graphs, here the opposite implication does not hold: not every pair of
2-approximate solutions fulfill the conditions. Thus, given a matching represented by a vector x, we
explicitly build a dual solution y such that x and y satisfy above conditions. This dual solution y will
serve as a 2-APLS for (FM , (w(M) ≥ w(MWM))) in a general graph.

Theorem 6. There exists a 2-APLS for (FM , (w(M) ≥ w(MWM))) with proof size O(logW ).

Proof. Let G be a weighted graph with weights in {1, . . . ,W} and M a maximum weight matching in G.
Let (xe)e∈E be the indicator vector of M . Define the values of the dual variables (yv)v∈V by yv = w(e) if
there exist an edge e ∈M such that v ∈ e, and yv = 0 otherwise. The label of a node v is set to be yv.

To verify (FM , (w(M) ≥ w(MWM))), a node v exchanges labels with its neighbors and check the
next feasibility condition:
– For each neighbor u of v, yu + yv ≥ w(u, v).

We start by showing that if M is indeed a MWM, then the relaxed complementary slackness conditions
hold. Let e = (u, v) be an edge satisfying xe > 0, i.e. e ∈ M , then yu = yv = w(e) and indeed
w(e) ≤ yu + yv ≤ 2w(e). For the second complementary slackness condition, let v be a node with yv > 0,
so there is exactly one edge (u, v) ∈M with x(u,v) = 1, while for every other neighbor u′ of v, x(u′,v) = 0,
so
∑
{e|v∈e} xe = 1.

For the feasibility, the input is a feasible matching, so
∑
{e|v∈e} xe ≤ 1 for each node v and xe ≥ 0 for

each edge e, and the primal solution x is feasible. For the dual solution y, assume towards contradiction
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that there is an edge e = (u, v), e /∈M , such that yu+yv < w(e). Then, the matching obtained by removing
any edge in M that touches u or v and adding e to M has a weight w(M)− (yu + yv) + w(e) > w(M),
which contradicts the maximality of M . The case of e ∈ M was considered in the previous paragraph.
Thus, we have a pair of feasible primal and dual solutions satisfying the relaxed slackness conditions, and
the solutions are 2-approximations of the optimal solutions.

Finally, consider a configuration Gs with label assignment (xe), such that all nodes output TRUE. The
labels represent a dual solution that satisfies all the relaxed complementary slackness conditions, so by
Theorem 5 the solution is a 2-approximation of the MWM.

We are unaware of any lower bound for the MWM problem in the PLS model, nor in the CONGEST
and LOCAL models. We note that for every approximation ratio α ≥ 1, some communication is needed
in any α-APLS for (FM , (w(M) ≥ w(MWM))). This is true since, for every configuration Gs with an
empty matching M = ∅ (not any approximation of MWM), the local view of every node is consistent
with some legal configuration with matching M ′, where w(M ′) = w(MWM). Let v be a node and let
u1, . . . , ud be the neighbors of v where the weight of every edge (v, ui) is wi. The construction of the legal
configuration Gv

s for v is as follows. Add nodes z1, . . . , zd and an edge ei = (zi, ui) of weight wi + 1 for
every 1 ≤ i ≤ d. Finally, define M ′ = {ei | 1 ≤ i ≤ d}. It is easy to verify that there is no augmenting
path for M ′ in this configuration, i.e., w(M ′) = w(MWM). However, the local view of v in Gs and in Gv

s

is the same. Therefore, without communication, v must output TRUE. Since the same holds for every node,
we conclude that some communication is necessary, regardless of the desired approximation ratio.

5 Discussion

This paper presents the new model of approximate proof-labeling schemes. We illustrate the power of the
APLS model with the D ≤ k predicate. We prove a tight lower bound (up to a logarithmic factor) in the
PLS model, and present two, more efficient, APLSs for this predicate. The two APLSs show a non-trivial
tradeoff between the approximation ratio and the proof size.

We also present a 2-APLS for the predicate w(M) ≥ w(MWM) on general graphs, a problem for
which it is unknown if a non-trivial PLS exists. Presenting an efficient PLS for this problem, showing
that a PLS with small proof size does not exist, or presenting an APLS with different approximation
ratio or different proof size are interesting questions left open.

It would be interesting to study the APLS model on other graph predicates. For example, the chromatic
number χ(G) of a graph G is the minimal number of colors in a proper node coloring of G. A PLS for
χ ≤ k with proof size O(log k) exists, where the proof is a proper coloring of the graph. However, it was
proven in [22] that any PLS for χ > 3 must have Ω̃(n2) proof size. Hence, also for this problem, the
APLS model may allow a more efficient verification.

Finally, the idea of approximation in verification we present in this paper can be extended to other
decision and verification schemes, such as the complexity classes LD and NLD, generating a different
classification of problems. For example, our 2-APLS for w(M) ≥ w(MWM) on general graphs can also
be used for 2-approximate NLD, under the relevant definitions, since the labels can be locally computed
by the nodes.
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