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Abstract. We consider the evacuation problem on a circle for three robots, at most one of which is
faulty. The three robots search for an exit placed at an unknown location on the perimeter of the circle.
During the search, robots can communicate wirelessly at any distance. The goal is to minimize the time
that the latest non-faulty robot reaches the exit.

Our main contributions are two intuitive evacuation protocols for the non-faulty robots to reach the exit
in two well-studied fault-models, Crash and Byzantine. Moreover, we complement our positive results
by lower bounds in both models. A summary of our results reads as follows:

– Case of Crash Faults: Lower Bound ≈ 5.082; Upper Bound ≈ 6.309,

– Case of Byzantine Faults: Lower Bound ≈ 5.948; Upper Bound ≈ 6.921,

For comparison, it is known (see [11]) that in the case of three non-faulty robots with wireless commu-
nication we have a lower bound of 4.159, and an upper bound.of 4.219 for evacuation, while for two
non-faulty robots 1 + 2π/3 +

√
3 ≈ 4.779 is a tight upper and lower bound for evacuation.

Key words and phrases. Algorithm, Byzantine Faulty, Crash Faulty, Evacuation, Robot, Search.

1 Introduction

Searching an environment to find an exit (or target) placed at an unknown location has been studied
extensively in computer science and robotics. The searchers are autonomous robots which (may)
cooperate during their search by exchanging messages so that at least one of them can find the target
in minimum possible time. Another form of search recently introduced in [11] is called evacuation
and it has the additional requirement that all the robots must go to the exit. Thus, optimality
in evacuation is measured by the time it takes for the last robot to reach the exit, whereas in
traditional search, optimality is measured by the time it takes the first robot to reach the exit.

In this paper we consider an evacuation problem for three robots which are able to communicate
wirelessly. Initially, the robots are located at the center of a disc of radius one and must find an exit
located on the circumference of the disc and then gather at the location of the exit. We consider two
scenarios in which exactly one robot is faulty. In the first scenario, one robot can experience crash
faults, which prevents it from either communicating or locating the exit. In the second scenario,
one robot can experience Byzantine faults, which allow it to lie, e.g., to claim to have found an
exit–where there is none– or even to fail to report (communicate) the location of the exit to the
other robots. Note that the evacuation problem is considered to be solved when both non-faulty
robots find the exit. For both scenarios, we provide upper and lower bounds.



1.1 Preliminaries/The Model

There are three robots initially located at the center of a unit disc. The robots can move with
maximum speed 1 (thus, they may stop or change direction at no cost), and are required to find
an exit (whose location is unknown to the robots) located somewhere on the circumference of the
disc and then gather at this location as fast as possible. On the perimeter of the disc the robots
have a sense of direction and can distinguish between clockwise and counterclockwise direcion of
movement. A robot can find the exit only when it is in the same location as the exit. During their
search the robots employ a wireless communication model, which means that they can exchange
information instantaneously and at no cost and at any time, no matter the distance that separates
them during their search.

The search problem to be studied is concerned with all non-faulty robots evacuating from the
(unknown) exit. The search task is complicated by the fact that one of the three robots, chosen by
an adversary, experiences faults, chosen by the adversary as well. We consider two scenarios. In the
first scenario, the faulty robot experiences crash faults while in the second the robot experiences
Byzantine faults. In both cases, the goal is to minimize the time till the last non-faulty robot reaches
the exit.

– Crash-Evacuation: A crash fault can be thought of as a passive fault rending: a robot is either
unable or incapable to either detect or report the exit when it reaches it. Thus, such a robot
is not expected to find the exit, only non-faulty robots can. However, we assume that in other
aspects, a faulty robot moves like a non-faulty robot, and thus non-faulty robots cannot detect
which robots are faulty.

– Byzantine-Evacuation: A Byzantine faulty robot not only can fail to detect or report the
target even after reaching it, it can also make malicious claims about having found the target
when in fact it has not. Given the presence of such a faulty robot, the search for the target can
only be concluded when the two non-faulty robots have sufficient verification that the target has
been found.

All the messages being transmitted by the robots are tagged with the robot’s unique identifier,
which cannot be altered.

1.2 Related work

Searching an environment to find an exit placed at an unknown location is a well studied problem in
computer science and robotics. The searchers are autonomous mobile robots that may also possess
partial knowledge of their environment. Many researchers, starting with the seminal work of Bellman
[5] and Beck [4], have studied the optimal (length) trajectory traced by a single robot when searching
for a target placed at an unknown location on a line. The aim of the algorithmic designer is to
minimize the competitive ratio, that is, the supremum, over all possible target locations, of the ratio
between the distance traveled by the robot until it finds the exit, and the distance of the exit from
the robot’s starting position. For the case of a single robot on a line, the optimal trajectory uses a
zig-zag, doubling strategy according to which if the robot fails to find the exit after travelling a
certain distance in a particular direction it returns to its starting position and doubles its searching
distance in the opposite direction. This trajectory has a competitive ratio of 9 and this can be
shown to be optimal (e.g., see Baeza-Yates et al. [3]).

Several authors considered the problem of searching in the two-dimensional plane by one or more
searchers, including [2, 3]. The evacuation problem on a unit disc for multiple robots considered in
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our present work is a form of two-dimensional search that was first considered in [11]. In that paper
the authors studied evacuation algorithms in the wireless and face-to-face communication models.
New algorithms for the face-to-face communication model were subsequently analyzed for two robots
in [14] and later in [7]. The problem has also been considered in other domains, like triangles and
squares in [16]. However, all these papers concern evacuation only for non-faulty robots.

One of the novelties of our current work is that we consider the two-dimensional evacuation
problem with fault tolerance. There are numerous studies of fault tolerance in distributed computing,
(see, e.g., [19, 22, 23]). Network failures were most frequently related to static elements of the
networked environment (i.e., nodes and links) as opposed to its mobile components. Malfunctions
of this kind were sometimes modelled by dynamic alteration of the network [8, 21]. Distributed
computation arising when having some of the mobile robots are faulty were investigated in the context
of the problems of gathering [1, 17, 18, 24], convergence [6, 9], flocking [25], and patrolling [12]. Several
researchers also investigated the case of unreliable or inaccurate robot sensing devices, e.g., [10, 20,
24]. Related to our study is also the research in [12], where a collection of robots, some of which
are unreliable, perform efficient patrolling of a fence. Most relevant to our current study for its
perspective on search and fault tolerance is the research of [15] and [13] which propose search
algorithms for faulty robots that may suffer from crash and Byzantine faults, respectively.

1.3 Outline and results of the paper

An outline of this paper can be described as follows. Section 2 is dedicated to upper bounds. In
Sections 2.1 and 2.2 we provide evacuation protocols along with their (worst case) analyses for
the Crash-Evacuation problem and the Byzantine-Evacuation problem, respectively. Then,
in Section 3 we give lower bounds for both problems. Section 4 gives a discussion of possibilities
for further research. The main results of the paper are summarized in Table 1. Notably, since the

Problem Lower Bound Upper Bound

Crash-Evacuation ≈ 5.082 (Theorem 3) ≈ 6.309 (Theorem 1)

Byzantine-Evacuation ≈ 5.948 (Theorem 3) ≈ 6.921 (Theorem 2)

Table 1. Comparison of Crash vs Byzantine: the first column gives the type of fault, the middle column lower bounds,
and the right column upper bounds for the corresponding type of faults.

optimal offline algorithm for both problems Crash-Evacuation and Byzantine-Evacuation
would have the robots move directly to the exit at time 1, the time bounds of Table 1 can be also
understood as bounds for the competitive ratio of the underlying online problems.

It is interesting to compare the results obtained in our paper to the case of non-faulty robots. It
is known (see [11]) that in the case of three non-faulty robots with wireless communication we have
a lower bound of 4.159, and an upper bound.of 4.219 for evacuation, while for two non-faulty robots
1 + 2π/3 +

√
3 ≈ 4.779 is a tight upper and lower bound for evacuation.

2 Evacuation Protocols

In this section we propose evacuation algorithms for crash and Byzantine faults, respectively.

2.1 Evacuating with Crash-Faults

The main contribution is as follows.

Theorem 1. Crash-Evacuation can be solved in time ≈ 6.309.
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We prove Theorem 1 by identifying the best among a special family of natural algorithms that
we call persistent. These are algorithms that force all robots to immediately go to the circumference
of the disc, and only allow a robot to stop exploring its segment of the disc (either by changing
direction, by becoming idle or by leaving the circumference entirely) when it receives information
about the exit. Since in this model, a faulty robot can only stay silent, any report about the exit
has to be valid. As such, once the location of the exit is received by a robot, the robot moves along
the shortest chord toward the reported exit, and evacuates.

We further classify persistent algorithms in two categories: the symmetric-persistent that have all
the robots begin their exploration in the same direction (either all clockwise or all counter-clockwise),
and the asymmetric-persistent that have one robot go in a direction, and the other two robots go in
the opposite direction. It turns out that the best asymmetric-persistent algorithm outperforms the
best symmetric-persistent algorithm (and also proves Theorem 1). Nevertheless, and as a warm-up,
we begin by providing a tight analysis for the family of symmetric-persistent algorithms.

Lemma 1. The best symmetric-persistent algorithms deploys the three robots at equidistant points
on the disk (at arc-distance 4π/3), and its performance is 1 + 4π

3 +
√

3.

Proof. (Lemma 1) Consider a symmetric-persistent algorithm that deploys robots r1, r2, r3 so that
their pairwise anti-clock-wise distance is β, γ and α respectively, as also depicted in Figure 1 (where
also arcs A,B,C are defined). Without loss of generality, assume the robots move in clockwise
direction.

r1

r2

r3

α

β

γ

A

B

C

Fig. 1. All robots move counter-clockwise. Arc A includes r3 and excludes r1; arc B includes r1 and excludes r2; and
arc C includes r2 and excludes r3.

Consider the case where r1 is faulty and the robots traverse the arcs depicted in Figure 1. Clearly,
there are two cases to consider depending on whether the exit is located in one of the arcs A or B,
or the exit is located on arc C. If the exit is located in one of the arcs A or B, then r3 will discover
it. If the exit is located in C, then r2 will discover it. We say that the exit is either located at a
counter-clockwise arc distance of 0 ≤ x < γ from r2 if r2 discovers the exit, or a counter-clockwise
arc distance of 0 ≤ y < α+ β from r3 if r3 discovers the exit. Therefore, the total amount of time
required to find the exit is given by the formula

1 + max

{
sup

0≤x<γ

(
x+ 2 sin

γ

2

)
, sup
0≤y<α+β

(
y + 2 sin

α+ β

2

)}
= 1 + max {f(γ), f(α+ β)} ,
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where we define f(x) := x+ 2 sin x
2 .

Similarly, if r2 or r3 is faulty, then the algorithm terminates in time 1 + max {f(γ), f(β + γ)}
and 1 + max {f(β), f(α+ γ)} respectively. We conclude that the best symmetric-adaptive algorithm
would choose α, β, γ (partitioning the perimeter of the circle, of length 2π) so as to minimize quantity

1 + max {f(α), f(β), f(γ), f(α+ β), f(β + γ), f(α+ γ), } (1)

By choosing α = β = γ = 4π
3 , expression (1) gives completion time 1 + 4π

3 +
√

3 as promised.
Finally, we argue that no values of α, β and γ respecting α, β and γ ≥ 0 and α+β+ γ = 2π can

improve on this bound. Say, we set α > 2π
3 . Then it is clear that either α+ β > 4π

3 or α+ γ > 4π
3 ,

since α + β + γ = 2π. Observe that function α + β + 2 sin α+β
2 is increasing in α + β, and when

α+β = 4π
3 , then (1) is upper bounded by 1+ 4π

3 +
√

3. Observe also that function α+γ+2 sin α+γ
2 is

increasing in α+ γ, and when α+ γ = 4π
3 , then expression (1) is upper bounded by 1 + 4π

3 +
√

3. We
conclude that function (1) strictly increases for α > 2π

3 . A similar argument shows that function (1)
increases if either β or γ exceed 2π

3 . This completes the proof of Lemma 1. ut

In order to proceed with the analysis of asymmetric-persistent algorithms, we need a simple
technical lemma, providing a worst case analysis for a special configuration of healthy searching
robots.

Lemma 2. Consider two robots at arc distance 2π − s that are about to explore an arc of length s
moving in opposing directions (toward each other). Assume also that an exit is located somewhere at
the arc of length s. Then, the worst case termination time g(s) is given by the formula

g(s) =

{
2 sin(s/2) ,if s < 2π/3

s/2− π/3 +
√

3 ,otherwise.

Proof. (Lemma 2) By symmetry, we may assume that the exit is found after time x by one of the
robots, where 0 ≤ x ≤ s/2 (see Figure 2). When the message is transmitted that the exit is found,
the two robots are at the endpoints of an arc of length s− 2x, hence at chord distance 2 sin(s/2−x).
Hence, the time elapsed till both robots reach the exit is x+ 2 sin (s/2− x). The claim follows by
the monotonicity of the latest function with respect to x in the interval [0, s/2]. This completes the
proof of Lemma 2. ut

We are now ready to prove Theorem 1, by determining the optimal asymmetric-persistent
algorithm.

Lemma 3. The best asymmetric-persistent algorithm has performance ≈ 6.309. The algorithm
achieving this bound deploys two robots to the same location on the disc, which they explore in opposing
directions. The third robot is deployed at arc-distance β0 from any of the robots, and starts exploring
in opposite direction of the closest robot, where β0 is the unique root of 3β/2+

√
3 = 4π/3+2 sin(β/2)

in the interval [0, 2π].

Proof. (Lemma 3) Consider an asymmetric-persistent algorithm that deploys robots r1, r2, r3 as
depicted in Figure 3, where α, β > 0 (the case β = 0 can be easily seen to induce worse termination
time, while the case α = 0 is identical to γ = 0).

There are a number of cases as to which the faulty robot is and where the exit is located. All
the cases are summarized in Table 2, where identical cases are also grouped together.

For each case we will determine the worst case running time. Then we will choose α, β, γ so as
to minimize the maximum of all these running times.
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2π − s
x x

Exit

Fig. 2. Exit found and reported after time x. Worst case is x = 0, if s ≤ 2π/3, and x = s/2− π/3 otherwise.

Fig. 3. Robots r1 and r2 move counter-clockwise; r3 moves clockwise. A excludes the starting position of r1 and r3; B
excludes the starting position of r2, but includes the starting position of r1; C includes the starting position of both
r2 and r3.

A B C

r1 Case 1 Case 1 Case 2

r2 Case 3 Case 4 Case 4

r3 Case 5 Case 6 Case 5

Table 2. The columns indicate the location of the exit. The rows indicate the faulty robot. r1’s initial search position
is in B, r2 and r3’s initial search position are in C.

– Case 1. After time γ, robots r2, r3 will be at arc distance γ and they will be about to explore an
arc of length α+ β = 2π − γ moving in opposing directions. Also the exit is located somewhere
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at the arc of length 2π − γ. Hence, by Lemma 2, the (worst case) total termination time will be
1 + γ + g(2π − γ) which simplifies to

e(γ) :=

{
1 + γ + 2 sin(γ/2) ,if γ > 4π/3

1 + γ/2 + 2π/3 +
√

3 ,otherwise.

Also, it is easy to see that e(γ) is strictly increasing, a fact we will use later on.
– Case 2. The setup is identical to that of Lemma 2 where the arc that holds the exit has arc

length s = γ. Hence, the (worst case) total termination time will be 1 + g(γ), which is easily
seen to be dominated by e(γ) of case 1, for every 0 ≤ γ ≤ 2π.

– Case 3. This situation is similar to Case 1, where (instead of γ) robots are at distance β + γ,
and they are moving toward each other, and in an arc segment that does not contain the exit.
Hence, the worst case termination time is equal to e(β + γ). Since e(·) is strictly increasing, this
case dominates the cost of case 1.

– Case 4. This situation is similar to Case 2, where (instead of γ) robots are at distance β + γ
and they are moving toward one another and toward the segment that contains the exit. The
maximal total required time is therefore given by the function 1 + g(β + γ), which is easily seen
to be dominated by e(β + γ) of case 3, for all 0 ≤ β + γ ≤ 2π.

– Case 5. We treat the case when r3 is faulty and the exit is either in C or A together. It is
clear that r2 will be the robot that finds the exit. Assume that the exit is located at distance
0 ≤ x < α+ γ from the initial searching position of r2 (to ensure that the exit is located in A).
Then the total required search time is given by 1 + x+ 2 sin β

2 , since the distance between r1, r2
remains invariant. Clearly, in the worst case, the total required search time is 1 +α+ γ + 2 sin β

2 .
– Case 6. This case is identical to case 5, where r1 will find the exit (instead of r2, but still β

remains their invariant distance), and where the arc that contains the exit has length β (instead
of α+ γ). Hence, worst case termination time is equal to 1 + β + 2 sin β

2

It follows that the best asymmetric-persistent algorithm is determined by α, β, γ that minimize

max {e(β + γ), 1 + α+ γ + 2 sin(β/2), 1 + β + 2 sin(β/2)} ,

i.e. the costs of cases 3, 5, and 6.
First we show that the promised upper bound is achievable. Indeed, we set γ = 0, so that

α+ β = 2π. Now we define β0, by equating the costs of cases 3,5, i.e. as the root of the equation
e(β) = 1 + 2π − β + 2 sin(β/2). Numerical calculations yield that β0 ≈ 2.96603, or in other
words (by looking at the definition of function e(β)), β0 is defined as the solution to the equation
3β/2 +

√
3 = 4π/3 + 2 sin(β/2). We conclude that γ = 2π − β0 ≈ 3.31716 < 4π/3, which induces

worst termination time to be the same in cases 3,5 and equal to 1 + 2π− β0 + 2 sin(β0/2) ≈ 6.30946,
as promised.

Now we prove the above choices are optimal. Indeed, if β + γ > 4π/3, then the total termination
time cannot be better than the situation where cases 3,5 induce the same cost. Equating the resulting
costs, we obtain that β + γ + 2 sin((β + γ)/2) = α+ γ + 2 sin(α/2). Using that β + γ = 2π − α, the
previous equation yields β − 2 sin(β/2) = α − 2 sin(α/2), i.e that α = β. But then γ = 0 as well.
Since β > 4π/3, the induced cost, by case 3, is at least 1 + 4π/3 +

√
3 ≈ 6.92084.

Finally, assume that β + γ ≤ 4π/3. For any fixed γ, the total termination time cannot be better
than the situation where cases 3,5 induce the same cost. Equating the resulting costs, we obtain
that (β + γ)/2 + 2π/3 +

√
3 = α+ γ + 2 sin(β/2). Since α = 2π − β − γ, the optimal choice for β
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should be βγ satisfying 3βγ/2 + γ/2 +
√

3 = 4π/3 + 2 sin(βγ/2). Note that βγ is a function of γ,
hence differentiating both sides of last equation with respect to γ, and after elementary calculations,
we obtain that β′γ(3/2− cos(βγ/2)) = −1/2. Since βγ > 0, we obtain that cos(βγ/2) < 1 and hence
β′γ > −1. This implies that expression βγ + γ is strictly increasing in γ, and this linear term appear
in the termination time of case 3. Hence, choosing γ = 0 is indeed optimal. This concludes the
proof of Lemma 3. ut

2.2 Evacuating in the presence of Byzantine Faults

The main contribution is as follows.

Theorem 2. Byzantine-Evacuation can be solved in time 1 + 4π
3 +
√

3 ≈ 6.92084.

Proof. (Theorem 2) The analysis relies on Figure 4. Assume that all three robots rk, for k ∈ {1, 2, 3},
execute the main evacuation Algorithm 1.

The idea of the algorithm is for the robots to traverse the circumference of the disk for a time
of 2π/3. Depending on the calls that have been received, the robots have information to either go
to the exit or continue traversing the circumference of the disk for another period of time time 2π

3 .
They can now verify conflicting messages of the correct location of the exit based on the calls that
have been made by the other robots so far. Details are being discussed in the sequel.

Algorithm 1: Evacuation with Byzantine Faults

1 Go to the circumference, at position 2πk
3

;
2 while rk’s location is not the same as the exit’s location do
3 for 2π

3
do

4 follow the circumference clockwise

5 if One robot claims to have found more than one exit then
6 Continue execution of algorithm as though the robot remained silent

7 if No information about exit then
8 for 2π

3
do

9 follow the circumference clockwise till exit is either found or reported. Finish

10 if One robot claims to have found the exit then
11 Go to closest part of the segment that is claimed to contain the exit;
12 Explore entire segment. Finish.

13 if Two robots claim to have found the exit then
14 Investigate both exits. Finish.

15 Inform all robots of the location of the exit.

First note that one time unit is required to reach the circumference of the disc. After 2π
3 additional

time units, the entire disc has been explored once. The areas explored by the robots are contiguous
but not overlapping. Observe that a Byzantine robot that claims to have found more than one exit
is immediately identified as faulty by the healthy robots. Both potential exits are ignored, and the
algorithm continues as though the robot had remained silent. If a non-faulty robot finds the exit,
it immediately informs all other robots, then stop its exploration. Say without loss of generality
that r1 is healthy. If r1 finds the exit during the first 2π

3 part of the exploration, then it stops and is
done with the execution of its algorithm, in a time at most 1 + 2π

3 . If it does not find an exit during
the first 2π

3 part of the exploration, then we must consider three cases:
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r1

r2

r3

2π
3

2π
3

2π
3

A

B

C

Fig. 4. The initial searching position for r1, r2 and r3 in the Byzantine faults model

– No exit location reported: If no exit was found, then keep exploring the circumference of the disk
for time 2π

3 . Notice that this means that the exit cannot be in B. If the exit is in C, then r1 has
found the exit, and its execution is complete in a time at most 1 + 4π

3 . If the exit is in A, then we
learn that r3 is Byzantine (otherwise, it would have claimed to have found the exit during the
first 1 + 2π

3 of the execution of the algorithm), and r2 will have correctly identified the location
of the exit (Notice that r1 needs to finish exploring the second arc C to make sure that it was r3
that lied.) Say the exit is located at an arc distance of 0 < x < 2π

3 from r1’s current position.
Then 2 sin x

2 is required for r1 to reach the exit. Since this function is monotone in x for x ≤ π,

r1 can reach the exit in a total time of at most 1 + 4π
3 +
√

3.
– One exit location reported: If one robot other than r1 claims to have found the exit, we consider

two situations: (1) the robot is healthy, in which case the exit is indeed located on the segment
where the announcement was made; or (2) the robot is Byzantine, in which case the other two
segments have been entirely explored by healthy robots (and are therefore reliably proven to
be empty), and the exit is located on the segment where the announcement was made. Notice
that in both situations, the only possible location for the exit is on the segment where the
announcement was made. If the announcement was made on the segment C, then r1 explores C
immediately, for a total time of at most 1 + 4π

3 . If the announcement was made on the segment

A, then r1 must first reach one end of segment A, which requires 2 sin 2π
3 =

√
3 (both ends of

the segment are equidistant from r1’s position), then explore the segment, for a total time of at
most 1 + 4π

3 +
√

3.
– Two exit locations reported: If both r2 and r3 claim to have found an exit, then we know that

one of those two claims is true. r1 will investigate both claims, starting by the closest one. Say
r2 claims to have found the exit at a distance x from its initial searching position, and r3 claims
to have found the exit at a distance y of its initial searching position. Then r1 must travel an

additional 2 sin x
2 + 2 sin

2π
3
−x+y
2 to reach both exits. This function is maximised for x = y = 2π

3 ,

for a total time of at most 1 + 2π
3 + 2

√
3.

Observe that both robots r2 and r3 execute the same algorithm, and the maximal time required
is therefore the same. The adversary will choose the location of the exit and the Byzantine robot in
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such way as to maximise the total time of execution of the algorithm. Therefore, since
√

3 < 2π
3 ,

this algorithm solves the evacuation problem in total time 1 + 4π
3 +
√

3. This completes the proof of
Theorem 2. ut

3 Lower Bounds for Evacuation Protocols

This section is devoted in proving our main negative results.

Theorem 3. The following lower bounds are valid.

(a) Problem Crash-Evacuation requires time at least 5.082.
(b) Problem Byzantine-Evacuation requires time at least 5.948.

The lower bound proofs for Crash and Byzantine faults, respectively, admit a unified approach
that we detail in the form of a few preliminary lemmata below.

It is easy to observe that if we consider three robots starting from the center of a unit disc then
for any ε > 0, at time 1 + 2π

3 − ε there is an equilateral triangle inscribed in the circle not all of
whose vertices have been explored by a robot. However, in the main proof we will make use of an
even stronger property of the three robots.

Next we define a useful property P (T ), where T > 0 denotes time, to be used in the rest of the
proof for a lower bound.

Definition 1 (Property P (T )). For any algorithm and any time less than T there are two points
on the circle at distance at least

√
3 and each of which was visited at most once by anyone of the

three robots.

Since Property P (T ) ensures the existence of two points at distance at least
√

3 which have
been visited at most once by the robots, a simple adversarial argument will guarantee that T +

√
3

is a lower bound on evacuation for Byzantine faults (see Lemma 6), while T +
√

3/2 is a lower on
evacuation for Crash faults (see Lemma 5). However, before proving these last statements, we are
interested to find a T which satisfies property P (T ).

Note that property P (T ) is monotone increasing in T , in that P (T ) ∧ T ′ ≤ T ⇒ P (T ′). Hence,
the larger the value of the parameter T for which P (T ) is valid the better the lower bound that can
be derived.

Lemma 4. Property P (1 + 13
√

3/7) is valid.

Proof. (Lemma 4) In the sequel, to help our intuition, we prove first the weaker statement that
P (4) is valid and then we improve this to P (1 + 13

√
3/7). Let us consider some algorithm at time

< T , where T = 4, and assume by contradiction that all points that have been visited at most once
by a robot are at distance less than

√
3 from each other. Clearly, all these points must lie on an arc

of length less than 2π/3. Therefore looking at the complement of this arc we find an arc of length
longer than 4π/3. In turn, this gives rise to a regular hexagon with five of its vertices inside this
last arc each visited twice by a robot. Therefore these five vertices of the hexagon have been visited
ten times in total by the three robots. Since there are three robots, it follows that at least one robot
must have visited four of these vertices. However this is impossible as T = 4. It follows that property
P (4) is valid.

Now we derive the main result of the lemma by showing that P (1 + 13
√

3/7) is valid. We argue
as in the previous paragraph, however, instead of selecting five vertices of a regular hexagon we will
choose the five points more carefully.
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As in the proof of P (4) above, let three points A,B,C be vertices of an equilateral triangle such
that every point in the perimeter of the disc which is visited by at most one of the three robots is in
the arc clockwise between A and B.

Fig. 5. Evacuation of the second truth telling robot.

In turn, this will give rise to five points on the circumference of the disc with each of its vertices
visited twice by a robot; namely choose a point D located between A and C and a point E between
B and C so that the length of arc AD is x and this is equal to the length of arc EB (the choice of
x will be based on maximizing the length of a path visiting these vertices and will be made precise
in the next paragraph). Since there are ten visitations by three robots one of the robots must have
visited four consecutive points at least once.

We will show that visiting four vertices among A,B,C,D,E takes time at least 13
√

3/7 ≈ 3.21.
If x < π/3 then there are 2 candidates for the shortest four-point walk, namely

either D → A→ B → E or A→ D → C → E.

Taking into account the lengths of the corresponding chords in these two paths, it turns out that we
need to maximize the function f(x) defined by the equation below.

f(x) := min{
√

3 + 4 sin(x/2), 2 sin(x/2) + 4 sin(π/3− x/2)}.

It is easily seen that the maximum of f is equal to 1 + 13
√

3/7 and it is obtained at x =
4/ arctan(1/(3

√
3)). The rest of the reasoning is the same as for T = 4 in the first paragraph

of the proof. This completes the proof of Lemma 4. ut

Proof. (Theorem 3) Now we are ready to conclude the proofs of the two parts of Theorem 3 on
crash and Byzantine faults, respectively.

Lower Bound for Crash-Faults The proof of Part (a) follows as a corollary of Lemma 5 below.

Lemma 5. If property P (T ) holds then we can achieve a lower bound of T +
√
3
2 on evacuation in

the presence of a crash-faulty robot.
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Proof. (Lemma 5) Identify two points A, B at distance ≥
√

3 each of which was visited at most
once by anyone of the three robots. Say r1 is the robot that visited neither of those points. Set the

exit to be the point farthest away from r1’s current location. Clearly, at least
√
3
2 is required for r1

to reach the point. This proves lemma 5. ut

Lower Bound for Byzantine-Faults The proof of Part (b) follows as a corollary of Lemma 6 below.

Lemma 6. If property P (T ) holds then we can achieve a lower bound of T +
√

3 on evacuation in
the presence of a Byzantine robot.

Proof. (Lemma 6) Identify two points A, B at distance ≥
√

3 each of which was visited at most
once by anyone of the three robots. Assume without loss of generality that r1 visited A. Then we
have two possibilities to consider: either r1 also visited B, or (say) r2 visited B.

If r1 visited both points, set r1 to be Byzantine, then wait until either r2 or r3 visit either A or
B. Once this first visit happens, claim that the exit is located at the other point. The robot that
visited the first point will require at least

√
3 to reach the other point, which proves the lemma in

this case.

If, say, r2 visited point B, then have r1 claim that the exit is located at point B, and r2 claim
that the exit is located at point A (which will happen as soon as the robots reach those points).
Then r3 will have to visit both points to find the real exit, since it has no means of distinguishing
the reliable robot from the Byzantine robot. Choose the first point visited by robot r3 not to have
the exit, and set the exit at the location of the other point. Then r3 requires at least

√
3 to reach

the other point, which proves the lemma in this case as well.

Combining these two cases, this completes the proof of Lemma 6. ut

If we note the following approximations for the quantities arising in Lemma 4: 1 + 13
√

3/7 ≈ 4.21
and 4/ arctan(1/(3

√
3)) ≈ 0.76, then the proof of Theorem 3 is complete. ut

4 Discussion and open problems

In this paper we considered the evacuation problem on a disc for three robots exactly one of which
has either crash or Byzantine faults. We analyzed the problem in both fault scenarios and gave lower
bounds as well as evacuation algorithms resulting in upper bounds. There are several challenging
open problems. In addition to closing the gaps between the upper and lower bounds for either robot
fault (either crash or Byzantine) model with wireless communication presented in our paper, it
would be interesting to investigate the evacuation problem

(a) for other types of communication models (e.g., face-to-face, or even limited visibility),

(b) for more than three robots f of which may be faulty and derive asymptotic bounds similar to
the results of [11], and

(c) for robots with not necessarily identical maximum speeds.

Despite the fact that obtaining tight bounds for evacuation problems are known often to lead to
functions which can be a challenge to optimize, the algorithmic insights derived by this interaction
between robot mobility and communication can lead to rewarding applications of distributed
computing in search and evacuation.
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