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Abstract. Alice wants to join a new social network, and influence its members
to adopt a new product or idea. Each person v in the network has a certain thresh-
old t(v) for activation, i.e adoption of the product or idea. If v has at least t(v)
activated neighbors, then v will also become activated. If Alice wants to make
k new friends in the network, and thereby activate the most number of people,
how should she choose these friends? We study the problem of choosing the k
people in the network to befriend, who will in turn activate the maximum number
of people. This Maximum Influence with Links Problem has applications in viral
marketing and the study of epidemics. We show that the solution can be quite
different from the related and widely studied influence maximization problem
where the objective is to choose a seed or target set with maximum influence.
We prove that the Maximum Influence with Links problem is NP-complete even
for bipartite graphs in which all nodes have threshold 1 or 2. In contrast, we give
polynomial time algorithms that find optimal solutions for the problem for trees,
paths, cycles, and cliques.

1 Introduction

The strategy of viral marketing for promoting new products or ideas is based on the
observation that once a certain fraction of a social network adopts a product, we can
expect a cascade of further adoptions [3, 16, 27]. Domingos and Richardson [12, 33]
were the first to raise the following important algorithmic problem in the context of
social network analysis: If a company can turn a subset of customers in a given network
into early adopters, and the goal is to trigger a large cascade of further adoptions, which
set of customers should they target?

The social network can be modelled by a node-weighted graph G = (V,E, t) with
V (G) representing individuals in the social network, E(G) denoting the social connec-
tions, and t an integer-valued threshold function. Starting with an initial seed set or
target set, that is, a subset S⊆V of nodes in the graph, that are activated by some exter-
nal incentive, influence propagates deterministically in discrete time steps, and is said
to activate nodes. For any unactivated node v, if the number of its activated neighbors at
time step i−1 is at least t(v), then node v will be activated in step i. A node once acti-
vated stays activated. Clearly the process terminates after at most |V |−1 steps. We call
the set of nodes that are activated when the process terminates as the activated set. The
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problem proposed by Domingo and Richardson [12, 33] can now be formulated as fol-
lows: Given a social network G = (V,E, t), and an integer k, find a subset S⊆V of size
k so that the resulting activated set is as large as possible. In the context of viral market-
ing, the parameter k corresponds to the budget, and S is a target set that maximizes the
size of the activated set. This influence maximization problem has been widely studied
[18, 22, 28, 19, 5, 17, 2, 14].

Recent work [10, 20, 25] points to some flaws in the above model for viral market-
ing. The authors of [10, 20] observe that a limitation of the model is that there is no
possibility of giving partial external incentives; indeed the initial seed set is activated
wholly by external incentives, and the remaining nodes only by the internal network
effect. The authors of [25] further critique the fact that the nodes in the seed set are
assumed to be activated immediately by external incentives, regardless of their own
thresholds of activation. They point out that this is unrealistic assumption, and sug-
gest that it is likely that highly influential nodes have high thresholds, and cannot be
activated by external incentives alone.

In this paper, we provide a new way to model a viral marketing strategy with a fixed
budget, that addresses the flaws mentioned above. In particular, we model strategies in
which each node in the target set is given some partial incentive, eg. a $10 coupon; for
some people this may be enough for them to buy the product, for others, it reduces their
resistance to buying it. We represent the initiator of the viral marketing strategy by a
node external to the social network. We can now restate the influence maximization
problem as follows: Suppose Alice, the external initiator, wants to join a new social
network, and can make k friends, how should she choose these friends if her goal is to
influence as many people as possible? In other words, to which k people already in the
social network should Alice create links, so that she can activate the maximum number
of people? If Alice creates a link to a node v, the threshold of v is only effectively
reduced by one, and so v in turn is activated only if its threshold is one. We call our
problem the Maximum Influence with Links problem (Max-Inf-Links).

Notice that the links added from the external node Alice correspond to the external
incentive given to the endpoints of these links. The nodes that are the endpoints of these
new links may not be immediately completely activated, but their thresholds are effec-
tively reduced; this corresponds to their receiving partial incentives. Individuals with
high thresholds cannot be activated only by external incentives, which better models
reality. The Max-Inf-Links problem also has applications in epidemiology or the spread
of diseases: if an infected person arrives from outside a community, the Max-Inf-Links
problem corresponds to identifying the set of k people such that if the infected external
person has contact with this set, the highest number of people in the community could
potentially be infected. The problem can obviously be generalized to a set of external
influencers wishing to infect or gain control of a network.

Observe that the solution to the Max-Inf-Links problem can be quite different from
the solution to choosing an optimal seed set for a given network. For example, consider
a clique Kn in which node 1 has threshold n−1 and the remaining nodes have threshold
1. If the budget k is 1, the optimal target set is clearly the node x, as choosing it activates
the entire network. However, if we choose to link to the node x, it does not get activated,
since its threshold is n− 1, and therefore no node in the network gets activated. The



optimal solution to the Max-Inf-Links problem is in fact to choose any of the other nodes
in Kn; this would activate the entire network. This would however be a sub-optimal seed
set.

1.1 Our Results

It was shown recently that it is NP-hard to find the minimum number of links required
for an external influencer to activate the entire network [25]. Since this is a special case
of our Max-Inf-Links problem, it follows that our problem is NP-hard in general. We
prove here that the Max-Inf-Links problem is NP-hard, even if all nodes have threshold
1 or 2, even in bipartite graphs, which have many applications in social networks. Note
that the NP-hardness proof in [25] does not apply to bipartite graphs. In light of the
hardness result, we study the complexity of the problem for social networks that can be
represented as trees, cycles, and cliques. We show that optimal solutions can be found
for the Max-Inf-Links problem with k links in time Θ(kn) for paths, Θ(kn2) for cycles,
Θ(k2n2) for trees, and Θ(n) for cliques. Note that k is always upper bounded by n.
Our algorithms for paths, trees, and cycles rely on non-trivial dynamic programming
formulations. Note that the algorithm for trees can be used for paths, but we are able
to get a much faster implementation for paths by making careful use of the solution
properties.

1.2 Related work

The problem of identifying the most influential nodes in a social network has received
a tremendous amount of attention [18, 22, 28, 19, 5, 17, 2, 14]. The algorithmic question
of choosing a seed set of size k that activates the most number of nodes in the context
of viral marketing was first posed by Domingos and Richardson [12]. Many natural
heuristics were proposed for the problem, such as choosing the nodes of highest de-
gree, or those central in terms of distance [23, 24]. Kempe et al [23] started the study of
this problem as a discrete optimization problem, and studied it in both the probabilistic
independent cascade model and the threshold model of the influence diffusion process.
They showed the NP-hardness of the problem in both models, and showed that a natural
greedy strategy has a (1−1/e− ε)-approximation guarantee in both models; these re-
sults were generalized to a more general cascade model in [24]. Mossel and Roch [30]
further generalized the results of [23, 24] by positively resolving their conjecture that
whenever the local threshold functions are local and submodular, the resulting influence
function is also a submodular function. Borgs et al [2] recently obtained a significant
improvement by giving an algorithm that obtains an approximation factor of 1−1/e−ε

for any ε > 0, in time O((m+n)k log(n)/ε2). A large body of work studies algorithms
that have performance guarantees and at the same time scale in practice to real-life and
very large-scale social networks [36, 35, 31]. Influence diffusion under time window or
deadline constraints has also been studied [15, ?,29, 26].

In the Target Set Selection problem ([4, 1, 32], the size of the target set or budget
is not specified in advance, but the goal is to activate the entire network or a fixed
fraction of nodes. Partial incentives were studied in the context of the target set selection
problem in [20], [21], [10], [25], and [8]. The closest formulation to our paper is the



Minimum Links problem introduced in [25], where it is required to find the minimum
number of links an external influencer needs to form to nodes in the network so that
the entire network is eventually activated. It was shown in [25] that the Minimum Links
problem is NP-hard, and in fact, it is even hard to approximate with ratio ε for some
constant ε. The authors gave linear time greedy algorithms for trees, cycles, and cliques.

Demaine et al [10] were the first to introduce the study of the maximization of influ-
ence with partial incentives and a fixed budget [10]. However, they consider thresholds
chosen uniformly at random, while we study arbitrary thresholds. Additionally, they
allow arbitrary fractional influence to be applied externally on any node, while in our
model, every node that receives a link has its threshold reduced by the same amount.
Eftekhar et al. studied a model where nodes become seed nodes with a fixed probability
[13]. Recently, this idea was extended by considering the idea of offering discounts to
nodes, which would cause some nodes to be be activated with a probability proportional
to the amount of the discount [34, 37].

2 Notation and preliminaries.

Given a social network represented by an undirected graph G = (V,E, t), we introduce
a set of external nodes U that are assumed to be already activated. We assume that all
edges have unit weight; this is generally called the uniform weight assumption, and has
previously been considered in many papers [4, 6, 7, 15, 25]. A link set for (G,U) is a set
S of links between nodes in U and nodes in V , i.e S⊆ {(u,v) | u ∈U ;v ∈V}. For a link
set S, we define E(S) = {v ∈V | ∃(u,v) ∈ S}, that is, E(S) is the set of V -endpoints of
links in S. For a node v ∈V (G), define r(v) to be the number of links in S for which v is
an endpoint. Since the set of external nodes U is already activated, observe that adding
the link set S to G is equivalent to reducing the threshold of the node v by r(v). In the
viral marketing scenario, the link set S represents giving v a partial incentive of r(v).

Given a link set S for a graph G, we define I(G,S) to be the set of nodes in G
that are eventually activated as a result of adding the link set S, that is, by reducing
the threshold of each node v ∈ E(S) by min{r(v), t(v)}, and then running the influence
diffusion process. See Figure 1 for an illustration. Observe that this is the same as the
set of nodes activated by using U as the target set in the graph G′, the graph obtained
from G by adding the set U to the vertex set and the set S to the set of edges.

Definition 1. Maximum Influence with Links problem
(Max-Inf-Links): Given a social network G=(V,E, t), and a set of external nodes U, and
an integer k, find a link set S of size k that maximizes I(G,S) among all k-sized link sets.
We denote by MI(G,k) the maximum number of people that can be influenced in G by
an optimal link set of size k, that is, if S is an optimal solution to the Max-Inf-Links(G,k)
problem, then MI(G,k) = |I(G,S)|.

In our algorithms, we consider the case of a single influencer, that is, U = {µ}.
In this case, a link given to a vertex v reduces its threshold by 1. Since µ must be an
endpoint of each edge in the link set S, each such edge can be uniquely specified by a
vertex in V . We therefore generally omit mention of µ in the rest of the paper, and the
link set S is referred to by its V -endpoints. For each such node v∈ E(S), we say we give
v a link, or that v receives a link.



1 1 1

1

12 2

2

3

a b c

d e f g

h i

µ

Fig. 1. Node µ is the external influencer and is assumed to be activated. Links in the link set are
shown with dashed edges. The given link set is an optimal link set of size 2 that activates 4 nodes:
a,b,d,e.

3 NP-hardness of Max-Inf-Links

In this section, we will prove that the decision version of the Max-Inf-Links problem
is NP-hard even for bipartite graphs in which thresholds of all nodes are either one or
two. It can be posed as follows: Given a social network G = (V,E, t), a set of external
influencers A, and integers k and p, is there a link set S of size k such that |I(G,S)|= p?
Note that in [25], the Min-Links problem (finding the smallest set of links which can
activate the entire network) was shown to be NP-hard, even for graphs of degree 3
and threshold at most 2. This immediately implies the NP-hardness of the Max-Inf-
Links problem as well. However, the reduction in [25] yielded a graph that was not
bipartite. Here, we extend the result for bipartite graphs.

Theorem 1. The decision version of the Max-Inf-Links problem is NP-hard, even for a
single external influencer, and bipartite graphs with all nodes having threshold 1 or 2.

Proof. We give a reduction from the Max-Clique problem: Given a graph G = (V,E)
and an integer k, does G contain a clique of size at least k?

Given an instance of the Max-Clique problem (G,k), we construct a bipartite graph
G′ = (V1∪V2, E ′, t) as follows. For every node v ∈ V , we create a corresponding node
v of threshold 1 in V1. For every edge {u,v} ∈ E, we create a corresponding node (uv)
of threshold 2 in V2. Next, for every edge {u,v} ∈ E, we create the edges (u,(uv)) and
(v,(uv)). Clearly, the transformation can be done in O(V +E) time. We show that G has
a clique of size k if and only if G′ has a link set of size k that can activate at least C2

k +k
nodes. The full proof is in the appendix. �

4 Optimal Algorithm for Trees

In contrast to the result of the previous section, in this section, we show that the Max-
Inf-Links problem can be solved in polynomial time in trees. Let T = (V,E, t) be a tree



with n nodes, V = {1,2, ...,n} and t : t(v)→ Z+. Fix an arbitrary root of the tree and
order the children of every node in an arbitrary fashion. We define Tv and dv to be the
sub-tree rooted at node v, and the number of children of node v respectively. We define
T−1

v to be the same sub-tree as Tv except that the threshold of the root v is reduced by
1. Note that while in the input, all thresholds are ≥ 1, in a tree T−1

v , the threshold of v
may be reduced to 0. We also define vi to be ith child of node v and Tvi to be the sub-tree
rooted at vi.

Given a tree Tv, the optimal solution to the Max-Inf-Links problem for Tv may or
may not activate the root. For example, in Figure 2, for the tree on the left, it can be
verified that every optimal link set of size 1 activates the root (one such link set gives
a link to the root node a and activates a and d), but for the tree on the right, there is
no link set of size 1 that activates the node a (an optimal solution gives a link to node
b, and activates both b and c) . Let MIA(Tv,k) be the problem of finding an link set
of at most k links to nodes in the sub-tree Tv that maximizes the number of influenced
nodes while ensuring that root v is activated. Similarly, let MIB(Tv,k) be the problem
of finding an link set of at most k links to nodes in the sub-tree Tv that maximizes the
number of influenced nodes while ensuring that root v is not activated. Let A(Tv,k) and
B(Tv,k) be the maximum number of nodes that can be influenced by an optimal solution
to MIA(Tv,k) and MIB(Tv,k) respectively. Clearly, given a tree T = (V,E, t) rooted at
node r, an optimal link set S for problem Max-Inf-Links(Tn,k) either activates or does
not activate the root r. Therefore:

MI(Tn,k) = max{A(Tr,k),B(Tr,k)}

1

a

2

c

1

d

1

e

2

f

2

a

1

b

1

c

1

e

2

f

Fig. 2. For the tree on the left, A(T,1) = 2, and B(T,1) = 1 while for the tree on the right,
A(T,1) =−∞, and B(T,1) = 1

We start with link sets that do activate the root. We first prove a critical lemma that
shows that any link set S that activates the root can be converted to an equivalent link
set that gives a link to the root.

Lemma 1. Suppose S is a link set of size k for a tree Tv in which v = root(T ) is acti-
vated, and (µ,v) /∈ S. Then there exists a link set S′ with (µ,v) ∈ S′ such that I(T,S′) =
I(T,S) and |S′|= k.



Proof. We prove the lemma by induction on the height of the tree T . Clearly, the lemma
is true for trees of height 0; the only way to activate the root in such a tree is to give a
link to the root v.

Now consider a tree T of height h and a link set S for T that activates v without
giving v a link. Clearly, there must exist a child c of v which is activated before v, and
contributes to the activation of v. By the inductive hypothesis, we can assume that c is
given a link in S. Consider S′ = S−{(µ,c)}∪ {(µ,v)}. Any node in Tv−Tc that was
activated by S before v, is also activated in S′ before v. Therefore v will be activated by
S′, and will subsequently activate c, and any nodes in Tc that were activated by c. All
other children of v that were activated after v in S will also be activated after v by S′.
Therefore, I(T,S) = I(T,S′). �

Lemma 1 tells us that an optimal link set S of size k that activates the root v of a tree
Tv can be assumed to give a link to the root v. Then the remaining k− 1 links must be
given to other nodes in Tv, but since v is activated by S, it must be that at least t(v)−1
children of v are activated before v and contribute to the activation of v. Observe that
once v is activated, the thresholds of its remaining children are effectively reduced by
1. This, together with the links given by the link set S to nodes in the subtrees of the
remaining children, may activate some of these children and subsequently other nodes
in their subtrees. Let Fv,d be the forest of subtrees rooted at the first d children of v.
We see that there exists some partition (C,D) of the roots of trees in Fv,dv such that
|C| ≥ t(v)−1 and S activates the nodes in C before v, and subsequently v gets activated,
which in turn reduces the thresholds of the nodes in D by one, perhaps contributing to
their activation.

We formalize and generalize the above to find appropriate link sets for the forest
Fv,dv . Let Fv,d be the forest consisting of the subtrees rooted at the first d children of v
and let (C,D) be a partition of the roots of the d trees. Let F(C,D) be a forest derived
from Fv,d by reducing the threshold of all nodes in D. We call a link set for F(C,D) a
C-activating link set if it activates all nodes in C, and maximizes the total number of
activated nodes in F(C,D). Given a forest F , and an integer i, we call a link set for F
an i-first link set if it is a C-activating link set for some partition (C,D) of the roots of
trees in F with |C| ≥ i. We now define MIA(Fv,d , i,k) to be the problem of finding an
i-first link set of size k that maximizes the total number of activated nodes in F .

Next consider a link set that does not activate v. In this case, at most t(v)−1 of v’s
children can be activated, as otherwise v would also be activated. To find such a link
set, we define MIB(Fv,d , i,k) to be the problem of finding a link set of size at most k
that activates the most nodes in Fv,d while activating exactly i roots of trees in Fv,d . Let
A(Fv,d , i,k) and B(Fv,d , i,k) be the number of influenced nodes by an optimal solution to
MIA(Fv,d , i,k). and MIB(Fv,d , i,k) respectively.

We now give recursive formulations for A(Tv,k), B(Tv,k), A(Fv,d , i,k), and B(Fv,d , i,k);
as we have already observed, they are inter-dependent. We start with a recursive formu-
lation for A(v,k).

Lemma 2.

A(Tv,k) =

 1+A(Fv,dv ,0,k) if t(v) = 0
1+A(Fv,dv , t(v)−1,k−1) if 1≤ t(v)≤ k
−∞ if k < t(v)



Proof. First suppose k≥ t(v) = 0. In this case, there is no need to give v a link, and none
of v’s children need to be activated before it. Therefore, A(Tv,k) = 1+A(Fv,dv ,0,k) as
claimed.

Next suppose k ≥ t(v) = 1. Then by Lemma 1, there exists an optimal link set S
in which root v receives a link, thereby activating v. It is then straightforward to see
that S−{v} is also an optimal solution to problem MIA(Fv,dv ,0,k− 1). It follows that
A(Tv,k) = 1+A(Fv,dv ,0,k−1) in this case.

Next, suppose 1 < t(v) ≤ k. Then giving root v a link does not suffice to activate
v; in fact t(v)− 1 of v′s children have to be activated before v, otherwise v cannot be
activated. By Lemma 1, however, there exists an optimal link set S which gives root v a
link. We claim that S−{v} is an optimal solution to problem MIA(Fv,dv , t(v)−1,k−1).
Suppose not, let |S| = k and let S′ be an optimal solution to MIA(Fv,dv , t(v)− 1,k− 1)
which can activate more nodes than S−{v}. With S′, t(v)− 1 children of v have been
activated. These activations, together with the link to v, are enough to activate node v,
and would reduce the threshold of the remaining children of v by 1. Therefore S′∪{v}
activates v as well as all nodes activated by S′ in Fv,d(v). Then S′∪{v} will be a link set
of k links which can activate more nodes in Tv than S, contradicting the optimality of S.
Therefore: A(Tv,k) = 1+A(Fv,dv , t(v)−1,k−1).

Finally suppose t(v)> k ≥ 0. Then we claim it is impossible to activate the root. If
it were possible to activate the root using k links, then by Lemma 1, there is an optimal
link set that activates the root and gives a link to v. Then the remaining k−1 links must
be given to nodes in Fv,dv . However using k−1 < t(v)−1 links, we can activate at most
k− 1 children of v, and together with the link given to v, the reduction in threshold of
v is < t(v), a contradiction. Thus in this case A(Tv, i) =−∞ as claimed. This completes
the proof of the lemma. �

Lemma 3. A(Fv,d , i,k)

=



−∞ if i > d
0 if i = d = 0
max

0≤p≤k
{A(Fv,d−1, i−1, p)+A(Tvd ,k− p)} if i = d > 0

max


max

0≤p≤k
A(Fv,d−1, i, p)+max

{
A(T−1

vd
,k− p)

B(T−1
vd

,k− p)

max
0≤p≤k

{A(Fv,d−1, i−1, p)+A(Tvd ,k− p)}
if 0 < i < d

max
0≤p≤k

A(Fv,d−1, i, p)+max

{
A(T−1

vd
,k− p)

B(T−1
vd

,k− p)
if 0 = i < d

Proof. If i > d, clearly it is impossible to activate at least i of the first d children of
v, therefore A(Fv,d , i,k) = −∞. If i = d = 0, the forest Fv,d is empty, and therefore, no
nodes can be influenced by any link set of any size.

If i = d, this means that all children v j with 1 ≤ j ≤ d have to be activated before
v. The optimal solution S will assign p links to Fv,d−1 and k− p links to Tvd , for some
p. It follows that A(Fv,d , i,k) = max

0≤p≤k
{A(Fv,d−1, i− 1, p)+A(Tvd ,k− p)} If i < d, and

vd is not activated before v by S, observe that vd may or may not be activated after v.



Besides, due to the fact that its parent has already been activated, the threshold of vd is
effectively reduced by one. An optimal link set S will assign p links to Fv,d−1 and k− p
links to Tvd , therefore we try all possibilities of p to find the best distribution. Therefore:

A(Fv,d , i,k) = max
0≤p≤k

{A(Fv,d−1, i, p)+max

{
A(T−1

vd
,k− p)

B(T−1
vd

,k− p)
}

Finally, if i < d and vd is activated before v by S, at least i−1 children of v in Fv,d−1
are required to be activated before v. Since vd contributes to the activation of v, the
threshold of vd remains unchanged.

A(Fv,d , i,k) = max
0≤p≤k

{A(Fv,d−1, i−1, p)+A(Tvd ,k− p)}

When i = 0, we only need to consider the first of the two situations above. �

Next we consider link sets that do not activate the vertex v (the proof of Lemma 4
is in the appendix).

Lemma 4.

B(Tv,k) =

{
max

0≤i<min(t(v),dv+1)
B(Fv,dv , i,k) if t(v)> 0

−∞ if t(v) = 0

Lemma 5. B(Fv,d , i,k)

=


max


max

0≤p≤k
{B(Fv,d−1, i, p)+B(Tvd ,k− p)}

max
0≤p≤k

{B(Fv,d−1, i−1, p)+A(Tvd ,k− p)}
if 0 < i,d

max
0≤p≤k

{B(Fv,d−1, i, p)+B(Tvd ,k− p)} if 0 = i < d

0 if d = 0

Proof. Suppose i,d > 0. Then in an optimal solution S to MIB(Fv,d , i,k), either vd is
activated or it is not. If vd is activated, then some p links are given to nodes in Fv,d−1 and
exactly i− 1 nodes are activated by S in Fv,d−1, while the remaining k− p links must
constitute an optimal solution to MIA(Tvd ,k− p). That is, B(Fv,d , i,k) = B(Fv,d−1, i−
1, p)+A(Tvd ,k− p). Alternatively, if vd is not activated by S, then some p links are
given to nodes in Fv,d−1 and exactly i nodes are activated by S in Fv,d−1, while the
remaining k− p links must constitute an optimal solution to MIB(Tvd ,k− p). That is,
B(Fv,d , i,k) = B(Fv,d−1, i, p)+B(Tvd ,k− p). If i = 0, this means no roots of trees in Fv,d
are to be activated, which means neither vd is activated, nor any roots in Fv,d−1 . Finally,
if the forest is empty (d = 0), then clearly the maximum number of nodes that can be
influenced is 0, regardless of i and k. �

Theorem 2. The Maximum Influence problem for a tree Tn = (V,E, t) using k links, can
be solved in time O(n2k2).

Proof. The recursive definitions given in Lemmas 2 to 5 can be computed using dy-
namic programming to obtain an optimal solution to the Max-Inf-Links problem. In
the worst case, for any node w with d children, we need to compute A(Fv,p, i, j) and
B(Fv,p, i, j) for 1≤ p≤ d, 0≤ i≤ d, and 0≤ j≤ k. These are d2k values, each of which



can take Θ(k) time to compute. The values A(Tv,k) and B(Tv,k) can be computed in
constant time, and there are k such values. Using the result of [9], the sum of squares
of degrees of a node in a graph is upper bounded by e(2e/(n−1)+n−2), which for a
tree is Θ(n2). Summing up the time over all vertices in the graph, we obtain a total time
of O(n2k2). �

5 Faster Algorithm for Paths

The algorithm for trees in the previous section obviously also applies to paths. In this
section, we give a Θ(kn) algorithm for the Max-Inf-Links problem in a path, by exploit-
ing its simpler structure. Let Pn = (V,E, t) be a path with n nodes, V = {1,2, ...,n},
E = {(i,(i + 1)) | 1 ≤ i ≤ n− 1}, and t : t(v) → Z+ (the threshold function). For
1≤ i≤ j≤ n, we define Pi, j to be the sub-path of Pn consisting of all nodes in {i, . . . , j}.

An optimal solution to Max-Inf-Links(Pi, j,k) may or may not activate the node i.
Accordingly, let MIA(Pi, j,k) be the problem of finding a link set of size at most k for
the sub-path Pi, j that maximizes the number of influenced nodes while ensuring that
node i is activated. Similarly, let MIB(Pi, j,k) be the problem of finding a link set of size
at most k for the sub-path Pi, j that maximizes the number of influenced nodes while
ensuring that node i is not activated. Let A(i, j,k) and B(i, j,k) be the number of nodes
that can be influenced by optimal solutions to MIA(Pi, j,k) and MIB(Pi, j,k) respectively.

The key idea of our algorithm is to break the path into subpaths containing only
nodes of threshold 1 and 2, separated by nodes of threshold 3 or greater. We give recur-
sive definitions for A(i, j,k) and B(i, j,k) when Pi, j has only nodes of threshold 1 or 2.
As we will see, these definitions are inter-dependent. We need the following definition.

Definition 2. Given a path Pn, fix i such that 1≤ i≤ n. We define next(i) = min{ j | i <
j ≤ n+1 and either t( j) = 1 or j = n+1}.

We see that next(i) is the first node after i to have threshold 1, unless i is the
rightmost node in the path with threshold 1, in which case next(i) = n+ 1. Clearly
A(n+1,n,k) =B(n+1,n,k) = 0 for all k. We now consider the case when 1≤ i≤ j≤ n.
We start with the case when t(i) = 2.

Lemma 6. Given a sub-path Pi, j in which all nodes have threshold 1 or 2, and t(i) = 2:

A(i, j,k) =

0 if next(i)> j
0 if A(i+1, j,k−1) = 0
1+A(i+1, j,k−1) if A(i+1, j,k−1)> 0

B(i, j,k) =


0 if next(i)> j

max

{
A(i+1, j,k)

B(i+1, j,k)
if next(i)≤ j

Proof. If next(i)> j then there is no way to activate any node in Pi, j, therefore A(i, j,k)=
B(i, j,k) = 0 for every k. If instead next(i)≤ j, then it is possible to activate at least one



node in Pi, j. Observe that in any feasible solution for MIA(Pi, j,k), not only does node i
need to receive a link, but its neighbor node i+1 needs to be activated as well, therefore
A(i, j,k) = 0 if A(i+1, j,k−1) = 0; otherwise A(i, j,k) = 1+A(i+1, j,k−1). Finally,
note that any feasible solution for MIB(Pi, j,k) is a solution in which i does not receive
a link, and the next node may or may not be activated, or it does receive a link, and
the next node is not activated. That is B(i, j,k) = max{A(i+1, j,k),B(i+1, j,k),B(i+
1, j,k−1)}= max{A(i+1, j,k),B(i+1, j,k)}. �

Next we consider the case when node i has threshold 1. In this case, the optimal
substructure of the problem is not so straightforward to prove. The difficulty arises
because an optimal solution S to MIA(Pi, j,k) may or may not activate node i+ 1. In
the case when it does not activate node i+ 1, we would like to claim that S consists
of a link to i and and an optimal solution to MIB(Pi+1, j,k− 1). However, we do not
know whether or not i + 2 was activated in a solution to MIB(Pi, j,k). So when we
combine such a solution with a link to node i, we may or may not activate node i+1.The
following technical lemma uncovers the structure of optimal solutions (the proof is in
the appendix).

Lemma 7. Let Pi, j be a path with t(i) = 1 and next(i) ≤ j. If in every optimal solu-
tion for MIA(Pi, j,k), node i receives a link, then there exists an optimal solution S for
MIA(Pi, j,k) in which neither i+1 nor i+2 receives a link.

The following lemma summarizes the optimal substructure of the problem when
t(i) = 1.

Lemma 8. Given a sub-path Pi, j in which all nodes have threshold 1 or 2, and t(i) = 1:

A(i, j,k) =


min{k, j− i+1} if next(i)> j

max

{
1+A(i+1, j,k)

1+B(i+1, j,k−1)
if next(i)≤ j

B(i, j,k) =
{

0 if next(i)> j
B(i+1, j,k) if next(i)≤ j

Proof. First we prove the correctness of the recursive definitions for A(i, j,k). If next(i)>
j, then node i must receive a link, as it is not possible otherwise to activate any node in
Pi+1, j. Thus node i receives a link and is activated first. Inductively, we can show that
node i+ 1 is the second node which receives a link and gets activated (see Figure 3).
Therefore, all nodes in {i, . . . , i+min{k, j− i+ 1}− 1} must receive a link. Any node
that does not receive a link cannot get activated, the maximum number of activated
nodes is min{k,n− i+1}. This shows that A(i, j,k) = min{k,n− i+1} in this case.

Otherwise, next(i) ≤ j, that is, node i is not the rightmost node with threshold 1.
First observe that either there exists an optimal solution for MIA(Pi, j,k) in which node
i does not receive a link, or in every optimal solution for MIA(Pi, j,k), node i receives
a link. In the first case, let S be an optimal solution for MIA(Pi, j,k) in which node
i does not receive a link. It follows that its neighbor node i + 1 was also activated.
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Fig. 3. An optimal link set S for MIA(Pi, j,4): the case when t(i) = 1 and next(i)> j

Clearly S must be an optimal solution for MIA(Pi+1, j,k) (if not, and if S′ is a solution
for MIA(Pi+1, j,k) that activates more nodes than S, then S′ is also a better solution for
MIA(Pi, j,k), contradicting the optimality of S. Therefore, A(i,k) = 1+A(i+1,k).

In the second case, by Lemma 7, we have an optimal solution S′ in which nodes
i+ 1 and i+ 2 do not receive links and are therefore not activated. Furthermore, using
a cut-and-paste argument, it is straightforward to see that S′′ = S′−{i} is an optimal
solution for MIB(Pi+1, j,k−1). It follows that A(i,k) = 1+B(i+1,k−1).

Finally, any solution in which node i is not activated, we can be sure that neither
node i gets a link, nor does its neighbor, node i+ 1 get activated. Therefore B(i,k) =
B(i+1,k). This completes the proof. �

We now use the definitions of A(i, j,k) and B(i, j,k) to prove the main result of this
section:

Theorem 3. Max-Inf-Links (Pn,k) can be solved in time Θ(kn).

Proof. If Pn has no nodes of threshold > 2, then clearly MI(Pn)=max{A(1,n,k),B(1,n,k)}.
If not, let q be the largest index of a node in Pn such that t(q) ≥ 3. If t(q) > 3, then q
cannot be activated, therefore, there is no need to give a link to q. That is, the optimal
solution to the Max-Inf-Links problem with k links does not give node q a link, and in-
stead uses ` links to solve the Max-Influence problem on the path P1,q−1 and k− ` links
to solve the Max-Influence problem on the path Pq+1,n for some value of ` such that
0 ≤ ` ≤ k. Thus the optimal solution can be found by checking for all possible values
of ` between 0 and k, yielding:

MI(Pn,k) = max0≤`≤k{MI(P1,q−1, `)+MI(Pq+1,n,k− `)}

Finally if t(q) = 3, then either there exists an optimal solution in which q is not
activated, in which case MI(Pn,k) is defined identically to the case when t(q) > 3, or
in every optimal solution q is activated. In this case, let S be an optimal solution to
MI(Pn,k). By assumption, q is activated. Since t(q) = 3, it must be that q gets a link,
and also that q−1 and q+1 are activated. Let S = S1∪{q}∪S2 where S1 = {1, . . . ,q−
1}∩S and S2 = S∩{q+1,n}, and let |S1|= ` and |S2|= k−1− ` We now claim that
S2 is an optimal solution to MIA(Pq+1,n,k− 1− `). If there was a better solution to
MIA(Pq+1,n,k−1− `) than S2, we can replace S2 by the claimed better solution in S to
get a better solution to Max-Inf-Links(Pn,k), a contradiction to the optimality of S.

Next we claim that S1 is an optimal solution to Max-Inf-Links(P1,q−1, `). Suppose
instead that S1 activates α nodes in P1,q−1 and there is another set of links S′ of size



` that activates β > α nodes in P1,q−1. If S′ activates q− 1, then clearly S′ ∪{q}∪ S2
activates more nodes than S in Pn, a contradiction to the optimality of S. If S′ does not
activate q, then S′ ∪ S2 does not activate node q but activates at least the same number
of nodes in Pn as S does, a contradiction to the assertion that every optimal solution
activates q. Therefore, we conclude that

MI(Pn,k) = max0≤`≤k{1+MI(P1,q−1, `)+A(Pq+1,n,k−1− `)}

Finally, we prove that the above formulation can be computed using dynamic pro-
gramming in time Θ(kn). For any sub-pathPi, j containing only nodes of threshold 1 and
2, the values of A(i, j,r), B(i, j,r) and MI(i, j,r) can be found using the definitions in
Lemmas 8 and 6 for all 0 ≤ r ≤ k in time Θ(k( j− i+ 1). Since the total lengths of
all sub-paths is at most n, the total time spent is Θ(nk). Since there are O(n) such sub-
paths, the recursive formulation for MI(Pn,k) above for a paths with no threshold limit
takes another O(kn) time to compute. �

5.1 Cycles

By taking out a single node from the cycle, and considering the resulting path, we can
obtain an algorithm for the Max-Inf-Linksproblem for cycles, as proved in the appendix:

Theorem 4. The Max-Inf-Links problem for a cycle Cn using k links, can be solved in
time θ(kn2).

6 Θ(n) Algorithm for Cliques

In this section, we give a linear time greedy algorithm for the Max-Inf-Links problem in
cliques (the proof is in the appendix).

Theorem 5. Max-Inf-Links(Kn,k) can be solved in time Θ(n).

7 Discussion

In this paper, we introduced and studied the Max-Influence-with-Links problem: given a
social network G where every node v has a threshold t(v) to be activated, and an integer
k, which k nodes in G should an already activated external influencer µ befriend, so as to
influence the maximum possible number of nodes in the network? We showed that the
problem is NP-complete, even for a single influencer, and bipartite graphs with max-
imum threshold 2. In contrast, for the case of a single external influencer, we showed
a linear time algorithm for cliques, Θ(kn) algorithm for paths, Θ(kn2) algorithm for
cycles, and a Θ(k2n2) algorithm for trees. It seems straightforward to generalize our
algorithms for any number k of external influencers. It would be interesting to study the
complexity of the problem for graphs of bounded tree width, and the approximability
of the problem for constant k. We are also interested in studying the case with non-
uniform weights on the edges. Clearly, the problem remains NP-complete in general,
but the complexity for special classes of graphs remains open.



References

1. O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman. Treewidth governs the complexity
of target set selection. Discrete Optimization, 8:702–715, 2011.

2. C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in nearly
optimal time. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA
’14, pages 946–957, 2014.

3. J. J. Brown and P. H. Reingen. Social ties and word-of-mouth referral behavior. Journal of
Consumer research, pages 350–362, 1987.

4. N. Chen. On the approximability of influence in social networks. In Proceedings of the
Symposium on Discrete Algorithms, SODA ’08, pages 1029–1037, 2008.

5. W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pages 199–208, 2009.

6. F. Cicalese, G. Cordasco, L. Gargano, M. Milanic, J. G.Peters, and U. Vaccaro. How to
go viral: Cheaply and quickly. In Fun with Algorithms, volume 8496 of Lecture Notes in
Computer Science, pages 100–112. 2014.

7. F. Cicalese, G. Cordasco, L. Gargano, M. Milanic, and U. Vaccaro. Latency-bounded target
set selection in social networks. In The Nature of Computation. Logic, Algorithms, Applica-
tions, volume 7921 of Lecture Notes in Computer Science, pages 65–77. 2013.

8. G. Cordasco, L. Gargano, A. A. Rescigno, and U. Vaccaro. Optimizing Spread of Influence
in Social Networks via Partial Incentives. In Proceedings of SIROCCO, pages 119–134.
2015.

9. D. de Caen. An upper bound on the sum of squares of degrees in a graph. Discrete Mathe-
matics, 185:245–248, 1998.

10. E. D. Demaine, M. T. Hajiaghayi, H. Mahini, D. L. Malec, S. Raghavan, A. Sawant, and
M. Zadimoghadam. How to influence people with partial incentives. In Proceedings of the
International Conference on World Wide Web, WWW ’14, pages 937–948, 2014.

11. T.N. Dinh, H. Zhang, D.T. Nguyen, and M.T. Thai. Cost-effective viral marketing for time-
critical campaigns in large-scale social networks. Networking, IEEE/ACM Transactions on,
PP(99):1–1, 2014.

12. P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’01, pages 57–66, 2001.

13. M. Eftekhar, Y. Ganjali, and N. Koudas. Information cascade at group scale. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’13, pages 401–409, 2013.

14. M. A. Fazli, M. Ghodsi, J. Habibi, P. J. Khalilabadi, V. Mirrokni, and S. S. Sadeghabad. On
the non-progressive spread of influence through social networks. In LATIN 2012: Theoretical
Informatics, volume 7256 of Lecture Notes in Computer Science, pages 315–326. 2012.

15. L. Gargano, P. Hell, J. Peters, and U. Vaccaro. Influence diffusion in social networks under
time window constraints. In Proceedings of SIROCCO, volume 8179 of Lecture Notes in
Computer Science, pages 141–152. 2013.

16. J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the
underlying process of word-of-mouth. Marketing Letters, 12:211–223, 2001.

17. A. Goyal, F. Bonchi, and L. V.S. Lakshmanan. A data-based approach to social influence
maximization. Proceedings of the VLDB Endowment, 5:73–84, 2011.

18. A. Goyal, F. Bonchi, L. V.S. Lakshmanan, and S. Venkatasubramanian. On minimizing
budget and time in influence propagation over social networks. Social Network Analysis and
Mining, 3:179–192, 2013.



19. A. Goyal, W. Lu, and L. V.S. Lakshmanan. Celf++: Optimizing the greedy algorithm for
influence maximization in social networks. In Proceedings of the International Conference
Companion on World Wide Web, WWW ’11, pages 47–48, 2011.

20. D. Gunnec and S. Raghavan. Integrating social network effects in the share-of-choice prob-
lem. Technical report, University of Maryland, College Park, 2012.

21. D. Gunnec, S. Raghavan, and R. Zhang. The least cost influence problem. Technical report,
University of Maryland, College Park, 2013.

22. J. He, S. Ji, R. Beyah, and Z. Cai. Minimum-sized influential node set selection for social
networks under the independent cascade model. In Proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’14, pages 93–102,
2014.
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A Appendix

Proof of Theorem 1. We show that G has a clique of size k if and only if G′ has a link
set of size k that can activate at least C2

k + k nodes. Figure 4 illustrates the reduction.
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Fig. 4. Reduction from G (top) to G′ (bottom); thresholds in G′ are indicated inside the circles
representing the nodes.

To do this, we first show that it suffices to consider link sets that contain only nodes
in V1.

Claim. For any link set T ⊆ V1 ∪V2, there exists a set S ⊆ V1 such that |S| ≤ |T | and
|I(G′,S)| ≥ |I(G′,T )|.

Proof. Consider a node v ∈ V2 that receives a link in T , and is connected to v1 and v2
∈ V1. We argue that we can either remove the link assigned to v, or assign that link to
some other node in V1 while not decreasing the size of the activated set. The following
four cases about the time of activation of v are exhaustive.

Case 1: v is not activated by T : We can simply remove the link assigned to v.
Case 2: v is activated before v1 and v2: Since v has threshold 2 while v1 and v2 are both

of threshold 1, this is impossible with a single influencer, as the link v receives
can only reduce its threshold by 1.

Case 3: v is activated after v1 (or v2) is activated and before v2 (rest. v1) is activated:
We can move the link assigned for v to v2 (resp. v1); the same set of nodes will
be activated eventually.

Case 4: v is activated after v1 and v2 are activated: The link given to v is unnecessary
and can be removed.

Claim. G′ has a link set S⊆V1 with |S| ≤ k and |I(G′,S)| ≥C2
k +k if and only if G has

a clique of size k.



Proof. Suppose first that G has a clique V ′ of size k. We claim that V ′ ⊆ V1 is a link
set such that |I(G′,V ′)| = C2

k + k. Clearly, all nodes in V ′ are activated at round 1.
Then since V ′ is a clique in G, it is easy to see that all nodes in V2 corresponding
to the C2

k edges between nodes in V ′ will be activated in round 2. This proves that
|I(G′,V ′)| ≥C2

k + k .
Suppose next that there is a link set S ⊆ V1 such that |I(G′,V ′)| = C2

k + k, then we
claim that the corresponding set for S in G forms a clique of size k.

We claim that given S ⊆ V1 as a link set, it is impossible to activate any new node
∈ V1 except nodes in S and for any node (uv) ∈ V2 that gets activated, it must be that
u ∈ S and v ∈ S.

Suppose there exists a node d ∈ V1− S such that d is eventually activated. Since d
has threshold 1 and d doesn’t receive a link, in order for d to be activated, one of d′s
neighbors must be activated first. Let us say d is connected to (dx) and (dx) is activated
before d. Node (dx) is of threshold 2, thus in order for (dx) to be activated, both d and
x must be activated before (dx), a contradiction.

For the second part, suppose there exists a node (uv) ∈V2 such that u /∈ S and (uv)
gets activated eventually. But from the previous analysis, we know that u can never be
activated. Therefore (uv) cannot be activated either.

We have shown that with a set S ⊆ V1 of size k, only nodes in S can be activated
for the nodes in V1; only those nodes which are connected to two nodes in S can be
activated for nodes in V2. If |I(G′,S)| ≥C2

k + k, then for every pair of nodes in S, they
must be connected in G, thus S must be a clique of size k in G.
This completes the proof of the reduction.

Proof of Lemma 4. First observe that if t(v) = 0, it is impossible to find a link set
that does not activate v. Next, assume t(v)> 0. Consider a minimum-sized link set S of
at most k links to nodes in the tree Tv that maximizes the number of influenced nodes
while not activating the root v. Clearly, S does not give a link to v. Furthermore, suppose
S activates i ≥ 0 of the children of v. Then i < t(v), as otherwise S would also activate
v. Then S must also be an optimal solution to .MIB(Fv,d , i,k). The lemma follows.

Proof of Lemma 7. Suppose in every optimal solution for MIA(Pi, j,k), node i receives
a link. Let S be an optimal solution for MIA(Pi, j,k) which uses the fewest links possible.

First we show that next(i) > i+ 2. By assumption, node i receives a link in S. Ob-
serve that if next(i) = i+ 1, then i+ 1 cannot have a link since that would contradict
the minimality of S. So we can simply move the link from node i to i+ 1 and activate
the same set of nodes, but this contradicts the assumption that in every optimal solution,
node i must receive a link. Next suppose next(i) = i+2. Then it is not possible that both
i+1 and i+2 receive links, as this would contradict the minimality of S. If exactly one
of i+1 and i+2 have a link, we can move the link to i to the node among i+1 and i+2
that does not have a link, thus creating a solution which activates exactly the same set
of nodes, a contradiction. If neither i+ 1 nor i+ 2 has a link, and neither is activated,
then the lemma is proved. Finally, if neither has a link, but one of them is activated, it
must be that i+ 2 is activated by node i+ 3. In this case, we can move the link from
node i to node i+1, getting a solution that activates the same set of nodes, a contradic-
tion to the assumption that every optimal solution must give i a link. We conclude that
next(i)> i+2, that is, there are at least two nodes in between i and next(i).
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Fig. 5. The case when next(i) is not activated. At least one node in {i+ 1, . . . ,next(i)− 1} does
not receive a link.

We now show that we can always change S to a solution S′ that does not activate
i+ 1 or i+ 2 but activates the same number of nodes as S overall. Let S1 = S∩{i+
1, . . . ,next(i)− 1} and S2 = S∩{next(i), . . . , j}. First suppose next(i) is not activated
by S. Then next(i) did not get a link, and there must be at least one other node in {i+
1, . . . ,next(i)−1} that did not receive a link, as if all such nodes received a link, next(i)
would be activated (see Figure 5). Therefore |S1| ≤ next(i)− i−2. Consider now the link
set S′ made by shifting all the links in S1 from i+1 onwards to a consecutive sequence of
nodes ending with next(i), that is, S′= {i}∪{next(i)−|S1|+1, . . .next(i)}∪S2. Then S′

is the same size as S, it activates exactly the same number of nodes as S, and is therefore
also optimal. Observe that next(i)−|S1|+1 > i+2, since |S1| ≤ next(i)− i−2. Thus S′

is an optimal solution to MIA(Pi, j that does not give links to i+1 and i+2 as needed.
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Fig. 6. The case when next(i) is activated either by a link or by next(i)+1. At least two nodes in
{i+1,next(i)−1} do not receive links.

Next suppose next(i) is activated by S. If next(i) was activated by next(i)−1, then
all nodes in {i+ 1, . . . ,next(i)− 1} must have received links, which contradicts either
the minimality of S, or the assertion that i gets a link in every optimal solution. So we
conclude that either next(i) received a link in S or was activated by next(i)+1. Since S is
minimal, there must exist at least one node in {i+1, . . . ,next(i)−1} that did not receive
a link. If there is exactly one such node p, then clearly every node in {i, . . . ,next(i)} is
activated by S, but then solution S′ which moves the link given to i to node p also
activates the same nodes, and contradicts the assertion that every optimal solution must
give a link to i. Therefore, there must be two nodes in {i+ 1, . . . ,next(i)− 1} that do
not receive links (see Figure 6). Therefore |S1| ≤ next(i)− i−3. Consider now the link
set S′ made by shifting all the links in S1 from i+1 onwards to a consecutive sequence
of nodes ending with next(i)−1, that is, S′ = {i}∪{next(i)−|S1|, . . .next(i)−1}∪S2.
Then S′ is the same size as S, it activates exactly the same number of nodes as S, and is



therefore also optimal. Observe that next(i)−|S1| > i+ 2, since |S1| ≤ next(i)− i− 3.
Thus S′ is an optimal solution to MIA(Pi, j,k) that does not give links to i+1 and i+2
as needed.

Proof of Theorem 4. Let ML(Cn) be the minimum number of links needed to activate
all the nodes in Cn. First, we check using the algorithm in [25] for the Minimum Links
problem if ML(Cn) ≤ k. If so, clearly MI(Cn,k) = n; otherwise it is not possible to
activate all the nodes in the ring with k links, and there must exist some node p in Cn
which is not activated by an optimal link set S for the problem Max-Inf-Links(Cn,k).
Since S is optimal, it is clear that S cannot give a link to node p. It is straightforward
to see that that S must be an optimal link set for problem Max-Inf-Links(Pp+1,p−1,k).
Therefore, MI(Cn,k) = MI(Pp+1,p−1,k). In order to find such a node p , we can try
every possibility of p (1≤ p≤ n) to find the maximum MI(Pp+1,p−1,k), this maximum
value is equal to MI(Cn,k).

MI(Cn,k) =

{
n if ML(Cn)≤ k
max

1≤i≤n
{MI(Pi+1,i−1,k)} otherwise

Checking if ML(Cn)≤ k can be done in linear time [25]. The time complexity of the
Max-Inf-Links algorithm for a path is Θ(kn) by Theorem 3. Therefore, the Max-Inf-Links
problem for a ring Cn can be solved in time θ(kn2).

Proof of Theorem 5. We give a greedy algorithm for the problem. Since any node of
threshold > n cannot possibly be activated, we simply discard such nodes. Next, we sort
the nodes in order of threshold. Since all nodes have threshold≤ n, we can use counting
sort and do the sorting in linear time. It is easy to see that if t(1) > 1, there is no way
to influence any node, that is MI(Kn,k) = 0. Assume now that t(1) = 1. We now give
a link to node 1, and let j > 1 be the minimum value such that t( j) > 1. If no such j
exists, then 1 link suffices to influence every node in Kn and we are done. Otherwise, all
nodes in {1, . . . , j−1} would be successively activated by the link given to node 1; we
remove all these nodes and their incident edges, decrement by j− 1 the thresholds of
all nodes ≥ j and solve the problem recursively on the resulting clique K′ using k− 1
links. That is, we claim MI(Kn,k) = j−1+MI(K′,k−1).

We now show that there exists an optimal solution that contains the node 1. Let
S be an optimal solution for problem Max-Inf-Links(Kn,k), and let node i be the node
with smallest index in S. If i = 1, we are done, so assume i > 1. It must be that t(i) =
1, as otherwise it is impossible to activate any node, therefore, we can create a new
solution S′ = S∪{1}−{i}. By the activation of node 1, node i would be also activated
automatically in the next round because of internal influence, thus I(Kn,S) = I(Kn,S′),
and S′ is an optimal solution that contains node 1 as needed.

Next we show that if S is an optimal solution for the problem
Max-Inf-Links(Kn,k) in which node 1 receives a link, then S′ = S−{1} is an optimal
solution for the problem Max-Inf-Links(K′,k− 1). Suppose there is a solution S′′ to K′

that activates more nodes than S′. Consider S′′ ∪{1} as a solution to Kn. The link to
node 1 activates all nodes in {1, . . . , j−1}, and the links in S′′ now activate all the same
nodes they activate in C′, since these nodes now have the same effective thresholds



they have in C′. Therefore, S′′ ∪{1} must activate more nodes than S in the clique Kn,
contradicting the optimality of S.

The greedy algorithm above can be implemented iteratively as follows: We examine
the nodes in order while we still have links to assign. When we process node i, if t(i)> i,
we stop assigning links and break. If t(i) < i, we simply increment i and continue.
Finally if t(i) = i, we give a link to node i. Clearly the implementation takes Θ(n) time.


