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Abstract

Communication problems in ad hoc wireless networks have been already widely studied under
the SINR model, but a vast majority of results concern networks with constraints on connectivity, so
called strongly-connected networks. In such networks, connectivity is defined based on highly reliable
links, that is, where both ends are located far closer from their transmission boundaries. What happens
if the network is not strongly-connected, e.g., it contains some long but still viable “shortcut links”
connecting transmission boundaries? It is known that even a single broadcast in such ad hoc weakly-
connected networks with uniform transmission powers requires Ω(n) communication rounds, where
n is the number of nodes in the network. The result holds even if the network is of constant diameter,
algorithms may use randomization, nodes of the network have access to their own coordinates and
have carrier sensing capabilities. The best up-to-date (randomized) distributed algorithm, designed
by Daum et al. [12], accomplishes broadcast task in O(n log2 n) communication rounds with high
probability.

In this work, inspired by the work on broadcasting, we show a novel deterministic distributed im-
plementation of token traversal — a fundamental tool in distributed systems — in the SINR model
with uniform transmission powers and no restriction on connectivity. We show that it is efficient even
in a very harsh model of weakly-connected networks without GPS, carrier sensing and other helping
features. We apply this method to span a traversal tree and accomplish broadcast in O(n logN) com-
munication rounds, deterministically, provided nodes are equipped with unique IDs in the range [1, N ]
for some integer N ≥ n. This result implies an O(n log n)-round randomized solution that does not
require IDs, which improves the result from [12]. The lower bound Ω(n logN) for deterministic algo-
rithms proved in our work shows that our result is tight without randomization. Our implementation
of token traversal routine, efficient in terms of time and memory, is based on a novel implicit algorith-
mic carrier sensing method and a new type of selectors, which might be of independent interest and
applicable to other communication tasks in distributed ad hoc setting.
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1 Introduction

We study distributed algorithms in ad hoc wireless networks in the SINR model with uniform transmission
powers. We consider an ad hoc setting, where both capability and knowledge of stations are limited —
nodes know only the basic parameters of the SINR model (i.e., α, β,N , P , to be defined later). We
assume that each node knows its distinct ID and the range of IDs [N ] = {1, . . . , N}. Such setting appears
in networks without predefined infrastructure of base stations, access points, etc. It reflects various real
scenarios, such as: large sets of sensors distributed in an area of rescue operation, environment monitoring,
or prospective internet of things applications.

Token traversal. We focus on the problem of token traversal, in which a software-defined token needs
to visit all (or a subset of) nodes in the network. More precisely, in the beginning there is a distinguished
node, called a source, which has a status of the token owner. In each round only one node can have a status
of the token owner. The ownership of the token can be passed to a neighbor via a message; in wireless
network, however, it can be challenging to select an unvisited neighbor to which the token can be passed,
due to ad hoc structure and interferences. The token traversal is accomplished if every participating node
has been a token owner for at least one round. Token traversal is a fundamental task in distributed system,
and a tool of building algorithms to solve more complex communication and computation tasks.

Broadcast problem. Token traversal has also been studied in the context of broadcasting and other
similar communication tasks. The broadcast problem was extensively studied in the model of graph-based
radio networks over the years, while distributed algorithms for the SINR model have been presented only
in recent years. However, all these solutions were either randomized, or relied on the assumption that
nodes of a network know their own coordinates in a given metric space (GPS), or used carrier sensing
capabilities or the advantage of power control (ability to change transmission power).

Challenges and our approach. Almost all communication algorithms analyzed in the SINR model
assumed strong connectivity of a network. That is, connectivity of a network is guaranteed by links (u, v)
such that efficient transmission from u to v (and from v to u) is possible provided interference at v caused
by other nodes of a network is limited by some fixed constant. Our aim is to provide solutions which
work in the most harsh and general scenario, when connectivity might rely on weak links and thus allow
for efficient transmissions only in the case of no other (or at least very rare number of) transmitters in
the whole network; it is called a weakly-connectivity model, and subsumes the strong-connectivity one.
Moreover, we assume that communicating devices have very limited capabilities, in particular, they do
not use randomization, availability of locations, carrier sensing, or power control. The key challenge
in design of algorithms for the model considered in this paper is the assumption that nodes of a network
have initially no information about network topology. The fact that nodes use a single wireless channel
and therefore their messages might collide is an additional obstacle for efficient communication.

Our results. We present a deterministic algorithm that traverses a token along any (even weakly-
connected) wireless ad hoc network, under the uniform-power SINR, in amortized O(logN) rounds.
More specifically, the token is propagated along a specific spanning tree, called a BTD tree, along partici-
pated nodes, in time proportional to the number of participants multiplied by O(logN). It can be applied
to perform broadcast in weak connectivity ad hoc networks in O(n logN) communication rounds, and is
supported by a corresponding lower bound. Presented algorithm builds a spanning tree of a network and
uses a specially implemented general token traversal technique. Our result implies O(n log n) random-
ized algorithm with high probability (i.e., with probability polynomially close to 1), even if IDs are not
available (see Section 7), which improves the O(n log2 n) algorithm of Daum et al. [12].

Our results show that even a single broadcast benefits from the token traversal technique, and there is
no other technique that could accomplish broadcast asymptotically faster in weakly-connected networks.
This suggests that techniques based on token traversal could play important role in efficient algorithmics
on weakly-connected ad hoc networks. We also introduce new tools, which might be applicable in
different scenarios and problems. Firstly, inspired by Echo procedure that simulates collision detection
in radio networks [34], we introduce a kind of implicit carrier sensing allowing fast testing of emptiness
of sets. Secondly, in order to efficiently select nodes from dense areas of a network, we introduce a new
combinatorial structure called a witnessed strong selector.
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Related work. The SINR model was extensively studied recently, both from the perspective of its struc-
tural properties [2, 18, 26, 27] and algorithm design [37, 14, 4, 12, 15, 20, 22, 25, 38, 28, 16, 19]. First
wave of algorithmic research on communication under SINR constraints focused on local problems prob-
lems. This includes in particular the local broadcast and link scheduling [14, 17, 4, 38, 29, 30].

Efficient implementation of tokens were provided in more restricted models of wireless ad hoc net-
works. Token-based algorithms were considered in related models of multiple-access channel and radio
networks, e.g., [5, 32]. In radio networks, an O(logN) procedure of token passing was presented in
[35], relying on Echo procedure. In [8] it was combined with the BTD tree traversal to solve various
communication tasks. In the SINR model of weak devices (i.e., when devices can receive messages only
from nodes located within distance substantially smaller than transmission range), subsumed by and less
complex then the weak-connectivity model, efficient implementation of a token was provided [32].

A few deterministic solutions are known for the broadcast problem, most of them use information
about location of nodes and assume strong connectivity. Broadcast can be accomplished deterministically
in time O(D log2 n) in such setting [25, 24], where D is the diameter of the communication graph. The
randomized results on broadcast in ad hoc settings include papers of Daum et al. [12] and Jurdziski et
al. [23]. Solutions with complexity, respectively O((D log n) logα+1 g) and O(D log2 n) are presented
for strong connectivity networks, where g is a parameter depending on the geometry of the network.
Recently Halldorsson et al. [15] proposed an algorithm which can be faster assuming that stations are
equipped with some extra capabilities, including carrier sensing.

For weak connectivity networks Daum et al. have provided an example showing that any distributed
(randomized) algorithm needs Ω(n) time in order to finish broadcast, even in 2-broadcastable networks
(i.e., networks for which two rounds are sufficient to finish the broadcast task). They also showed that the
problem can be solved in O(n log2 n) time with high probability.

In the related multi-hop radio network model on symmetric networks, the broadcast problem is well
examined [1, 3, 11, 36, 31, 33, 13].

2 The Network Model

We consider a wireless single-channel network consisting of nodes located on the 2-dimensional Eu-
clidean plane, where interferences are modeled according to SINR (Signal-to-Interference-and-Noise Ra-
tio) constraints. The model is determined by fixed parameters: path loss α > 2, threshold β > 1, ambient
noise N > 0 and transmission power P . Given nodes u, v and a set of concurrently transmitting nodes
T , the value of SINR(v, u, T ) is defined as

SINR(v, u, T ) =
P · d(v, u)−α

N +
∑

w∈T \{v} P · d(w, u)−α
(1)

where d(x, y) denotes the distance between locations of x and y.
A node u successfully receives a message from v iff v ∈ T and SINR(v, u, T ) ≥ β, where T is

the set of stations transmitting at the same time. Transmission range is the maximal distance at which a
station can be heard provided there are no other transmitters in the network. Without loss of generality we
assume that the transmission range is equal to 1. This assumption implies that the relationship P = Nβ
holds. However, it does not affect generality and asymptotic complexity of presented results.
Communication graph The communication graphG = (V,E) of a given network consists of all nodes
from V and edges {v, u} between nodes that are within distance of at most 1, i.e., {v, u} ∈ E iff d(u, v) ≤
1. The communication graph, defined as above, is a weak connectivity graph [12, 21].
Synchronization and content of messages We assume that algorithms work synchronously in rounds.
In a single round, a node can transmit or receive a message from other node in the network and perform
local computation. A message transmitted by a node in a round might contain the original broadcast
message and additional information of size O(logN).
Knowledge of stations Each node has a unique identifier from the set [N ], where N > n and n is the
number of nodes in the network. We consider the case that the value of n (or its linear approximation)
is known to nodes of a network as well as the scenario, where no information about the value of n is
available. Moreover, nodes know the range of IDs space N , and the SINR parameters – P, α, β,N .
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Considered problems We consider a general token traversal problem defined in Section 1. A node v 6=
s starts participating in an execution of an algorithm only after receiving the first message from another
node. (This is so-called non-spontaneous wake-up model.) We also consider the broadcast problem which
is to deliver a message from the designated source node s to all the nodes in the network, perhaps through
relay nodes as not all nodes are within transmission range of the source in multi-hop networks.
Complexity measure Time (or round) complexity of an algorithm is the number of rounds after which
an execution of an algorithm is finished. We assume worst-case complexity measure. Thus, for given
parameters (including the size of the network n), we are interested in the largest time among networks
with these parameters.
Constructive vs non-constructive solutions. We say that an algorithm is constructive if the algorithm
for a given value of N can be built in time polynomial with respect to N . The algorithms delivered in
this work are constructive, even though some procedures, e.g., new witnessed strong selectors, could be
non-constructive in general — this is because of the fact that our algorithms use such procedures only for
the range of parameters guarantying polynomial time construction.

3 Preliminaries and Combinatorial Tools
The set of integers {1, 2, . . . , n} is denoted by [n] and {i, i+ 1, . . . j} by [i, j].

A transmission schedule is defined by a sequence S = (S1, ..., St) of subsets of [N ], where the ith set
determines nodes transmitting in the ith round of the schedule. That is, a node with ID v ∈ [N ] transmits
in round i of an execution of S if and only if v ∈ Si.

In the following, V denotes the set of nodes of a network on the plane. Thus, each node v ∈ V is
determined by its identifier ID(v) in [N ] and its coordinates on the plane. In descriptions of algorithms,
ID(v) is sometimes identified with v. Let B(x, r) denote the ball of radius r around point x on the plane.
We identify B(x, r) with the set of nodes of the network that are located inside this ball on the plane. For
a node v ∈ V , Nv = {w ∈ V | d(v, w) ≤ 1} denotes the set of neighbors of v in the communication
graph. For a > b > 0, χ(a, b) denotes the largest possible size of a set of points X included in a ball of
radius b such that d(x, y) > a for each distinct x, y ∈ X .

A node w is in the graph distance i from v if i is the length of a shortest path connecting w and v
in the communication graph. Assume that a distinguished source node s ∈ V is fixed. Then, Li ⊆ V
denotes the set of nodes in graph distance i from s (layer i). Thus, e.g., L0 = {s} and L1 = Ns.

We say that a node v awakes w in an execution of an algorithm if the first message successfully
received by w is sent by v.

3.1 Combinatorial Tools

In this section we introduce combinatorial tools applied in our token traversal algorithm.
A set S ⊆ [N ] selects x ∈ X from X ⊆ [N ] when S ∩X = {x}. A sequence S = (S1, . . . , St) of

sets over [N ] is called (N, k)-strongly selective family (or (N, k)-ssf) if for each subset X ⊆ [N ] such
that |X| ≤ k, and each x ∈ X there is i ∈ [t] such that Si selects x from X .

Lemma 1. [10] There exists a (N, k)-ssf of size O(min{k2 log(N/k), N}) for each k ≤ N .

Now, we introduce the notion of a witnessed strong selector, which is a generalization of strongly
selective families.

Witnessed strong selector. A sequence S = (S1, . . . , Sm) of sets over [N ] satisfies witnessed strong
selection property for a set X ⊆ [N ], if for each x ∈ X and y 6∈ X there is a set Si ∈ S such that
X ∩ Si = {x} and y ∈ Si. A sequence S = (S1, . . . , Sm) is a (N, k)-witnessed strong selector (or
(N, k)-wss) of size m if for every subset X ⊆ [N ] of size k the family S satisfies the witnessed strong
selection property for X .

Note that any (N, k)-wss is also, by definition, an (N, k)-ssf. Additionally, (N, k)-wss guarantees
that each element outside of a given set X of size k has to be a “witness” of selection of every element
from X . Below we state an upper bound on the optimal size of (N, k)-wss.

Lemma 2. For each positive integers N and k ≤ N , there exists an (N, k)-wss of size O(k3 logN).
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Construction of witnessed strong selectors. We aim at the efficient algorithm constructing a (N, k)-wss
for a constant k. Our solution is inspired by the algorithm of Clementi et al. [9], which employs the
technique of conditional probabilities.

Lemma 3. For each integers 0 < k < N , a (N, k)-wss of size O(k3 logN) can be constructed in time
NO(k); in particular, it can be constructed in polynomial time for any k = O(1).

3.2 SINR related properties
We say that distinct nodes u, v ∈ A form a closest pair of nodes (u, v) in the set A if d(u, v) =
minx,y∈A,x 6=y{d(x, y)} ≤ 1/2.1

Below, we state the fact that u can hear v if (u, v) is a closest pair, v is transmitting and there is no
other transmitter in distance O(d(u, v)), where the constant hidden in the big-O notation is determined by
SINR parameters. This fact has been used in various papers several times, we recall it here as we have not
found an explicit statement which we need in other papers.

Lemma 4. There exists a constant κ0 (which depends merely of the SINR parameters) which satisfies the
following property. Let u, v be a closest pair of nodes, d(u, v) = d < 1/2 inA. If u is the only transmitter
in B(v, κ0 · d), then v receives the message from u.

The following corollaries following from Lemma 4, the optimal size of witnessed strong selectors (Lemma 2)
and the definition of a closest pair.

Corollary 1. There exists a constant κ (which depends merely of the SINR parameters) which satisfies the
following property. Let u, v be a closest pair of nodes in A, d(u, v) = d < 1/2. Then, there exists a set
A′ ⊆ A such that u, v ∈ A′, |A′| ≤ κ and v receives a message transmitted from u provided u is sending
a message and no other element of A′ is sending a message.

Corollary 2. There exists a transmission schedule S of size O(logN) such that, for each closest pair
(u, v) in A, u receives a message from v during an execution of S on the set A.

4 High Level idea of the algorithm

Our token traversal algorithm builds a spanning tree of the communication graph of a network, where the
source node s (the initial holder of the token) is the root. Each node, after receiving the token, transmits
the broadcast and awake message. If a node u is awaken by v (i.e., u receives the first message from v),
u becomes a child of v and v is the parent of u. After sending the broadcast and awake message, the
token holder learns all its newly-awaken neighbors, who have become its children. After that, the token
holder passes the token sequentially to all its children. Finally, it passes the token back to its parent.
The algorithm ends when the source receives the token back from all its children. A similar approach,
resembling both dfs and bfs, has appeared in the context of radio networks [8] under the name Breadth-
Then-Depth (BTD) search.

The most challenging part for a design of the above strategy in the model considered in this paper
is to learn the children of a node. To this aim, we consider the full selection problem: for a given node
v and a set X of its neighbors unknown to v, the node v should learn the set X . Using appropriate
novel selectors, and the idea of local leader election in the uniform SINR model [25], we can assure
that full selection is done in O(log2N + |X| logN) rounds. As each node becomes the child of only
one other node, an application of full selection at each node (when it receives the token for the first
time) would give O

(∑
v∈V (log2N + |children(v)| logN)

)
= O(n log2N) time algorithm. In order to

improve time complexity to O(n logN), we will reduce full selection time from O(log2N + |X| logN)
to O(logN + |X| logN). To this aim, we apply a kind of implicit carrier sensing (see Subsection 5.1).
Thanks to that tool, we can check whether X is empty in O(logN) rounds and reduce complexity of full
selection to O((|X|+ 1) logN).

Implicit carrier sensing technique allows for checking emptiness of a set X ⊆ Nv, provided two aux-
iliary nodes v1, v2 are known such that d(v, v1) ≤ 1, d(v1, v2) ≤ 1 and d(v, v2) > 1. Our implementation

1Note that there is no closest pair in A according to this definition if d(x, y) > 1/2 for each distinct x, y ∈ A.
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of the token traversal algorithm will assure that d(v, parent(v)) ≤ 1 and d(v, parent(parent(v))) > 1 for
each v in graph-distance at least 2 from the source s. Thus, the auxiliary nodes can be v1 = parent(v)
and v2 = parent(parent(v)). This however does not apply to the source s (it does not have the parent)
and its neighbors (there is no parent(parent(v)) for each v ∈ Ns). Therefore, we have to handle {s} ∪Ns

separately, using less efficient emptiness test and more complex algorithm.

5 Implicit Carrier Sensing and Network Sparsification

5.1 Implicit carrier sensing

Consider the problem that a node v is going to verify quickly whether some set X ⊆ Nv is empty.
Each node x knows whether x ∈ X but nodes do not have any information regarding other elements
of X . At the end of an execution of an algorithm, v should know whether X = ∅. This problem has
been solved efficiently by so-called Echo procedure in the symmetric radio networks model, provided
the node v knows some neighbor w 6∈ X already. This gave a kind of implicit collision detection and
lead to surprisingly efficient algorithms in radio networks without collision detection [34]. We develop an
analogous tool for SINR networks, which provides a limited carrier sense capability.

Assume that v, v1, v2 are fixed such that v is a neighbor of v1 and v1 is a neighbor of v2. Moreover,
at least one of distances d(v, v1), d(v1, v2) is not smaller than 1/2. Then, we can test emptiness of X by
checking if (see Fig. 1)
• v receives the message from v1 when v1 transmits together with X , and
• v1 receives the message from v2 when v2 transmits together with X .

More precise description of the procedure is given as EmptinessTest below (see Alg. 1). The constant cα,β
in the algorithm is equal to the smallest number c such that c transmitting nodes located in distance (at
most) 2 from a given node u produce interference which prevents reception by u of a message transmitted
from distance ≥ 1/2.

Algorithm 1 EmptinessTest(v, v1, v2, X)

Assumptions: d(v, v1) ≤ 1, d(v1, v2) ≤ 1, (d(v, v1) ≥ 1/2 or d(v1, v2) ≥ 1/2), X ( Nv , v1, v2 6∈ X .
Let cα,β be the smallest natural number such that P/(1/2)α

N+cα,βP/2α
< β.

1: Round 1: v1 and all elements of X transmit a message
2: Round 2: v2 and all elements of X transmit a message
3: Round 3: if v1 received a message in Round 2 then v1 transmits a message
4: if v received a message in Round 1 and v received a message in Round 3 then
5: execute (N, cα,β)-ssf on all elements of X
6: if v received a message: return false
7: else return true
8: else
9: return false

Lemma 5. EmptinessTest works in O(logN) rounds. Moreover, if d(v, v1) ≤ 1 and d(v1, v2) ≤ 1 and
(d(v, v1) ≥ 1/2 or d(v1, v2) ≥ 1/2) then EmptinessTest(v, v1, v2, X) returns true if and only if the set
X ⊆ Nv is empty.

5.2 Network sparsification
In this section we develop a tool for fast selection of elements of a set of nodes. The particular problem
of network sparsification is as follows: given a non-empty set X of nodes such that at least two nodes
are within distance 1/2, choose a subset Y of X such that 1 ≤ |Y | ≤ |X|/2. The idea is to use a short
schedule which guarantees that close neighbors can hear each other (see Corollary 2), implicitly build a
graph corresponding to these two-way transmissions, choose a non-empty matching in such a graph, and
select one element from each matched pair.

As a direct application of Corollary 2 does not give a satisfying time complexity, we then introduce
the notion of proximity graph and show how to build it with aid of witnessed strong selectors efficiently.
This, in turn, gives a O(logN) time algorithm for network sparsification.
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Exchange graphs We define the notion of exchange graph which describes all possible exchange of
messages between nodes during an execution of a schedule T . For a given schedule T and the set of
stations V , an exchange graph GT is a graph on V , such that {u,w} is an edge in GT iff there is a
successful transmission in both directions between u and w during T .

We say that a distributed protocol builds GT if, as a result of an execution of this protocol on a given
network, each station knows its neighbors in GT . Note that, after a single execution of T , each station
v knows stations whose messages are successfully received by v in T . However, in order to determine
its neighbors in GT , v also needs to know which nodes received its message during an execution of
T . In order to provide this information to all stations, we can apply the following algorithm, called
ExGraphConstructionT . First, each station v enumerates the senders u1, . . . , up of all messages received
during T . Then, one can repeat |T | times the schedule T , where each station transmits ui in the ith
repetition of T .

Lemma 6. ExGraphConstructionT builds the exchange graph GT in O(|T |2) rounds. Moreover, if the
maximal degree δ of GT is known to stations in advance, the algorithm works in O(|T |δ).

Proximity graphs The idea behind our network sparsification algorithm it to build a non-empty graph
on nodes of an input set X containing a closest pair, find a matching in that graph and choose one element
of each matched pair as an element of the output Y . To do this, a fast protocol which produces a non-
empty graph is needed, provided there is a closest pair in the input set of nodes. Let proximity graph of a
given set of nodes be any graph on this set such that vertices of each closest pair u, v are connected by an
edge (while the graph may contain more edges).

By Corollary 1 we know that, in an execution of (N,κ)-ssf, nodes of each closest pair hear each other.
Thus, by Lemma 6 the protocol ExGraphConstructionT, where T is an (N,κ)-ssf of length O(κ2 logN)
(see Theorem 1) builds a proximity graph in O(log2N) rounds.

Our goal is to build a proximity graph faster. Our construction builds on the following observations.
First, if u can hear v during an execution of T in a round in which w is transmitting as well, then u,w is
for sure not a closest pair. Second, by Corollary 1, given a closest pair (u, v), u can hear v in a round in
which v transmits and none of the other κ closest to u stations transmits.

Given an (N,κ)-wss S for the constant κ from Corollary 1, one can build a proximity graph in
O(logN) rounds using the following distributed algorithm called ProximityGraphConstruction at a sta-
tion v (see pseudocode in Alg. 9 and an illustration on Fig. 2):

• Execute S.

• Determine the set Cv of all stations u such that v has received a message from u during S and v has
not received any other message in rounds in which u is transmitting (according to S).

• If |Cv| > κ, then remove all elements from Cv.

• Send information about the content of Cv to other nodes in consecutive |Cv| repetitions of S.

• Choose as neighbors in the final graph the set Ev of all elements w ∈ Cv st v ∈ Cw.

Lemma 7. Let X ⊆ V be a set of nodes. Then ProximityGraphConstruction executed on X builds a
proximity graph H(X) of constant degree in O(logN) rounds.

Handshakes and sparsification Let H(X) denote the proximity graph resulting from the Proximity-
GraphConstruction procedure executed by nodes in X . We assume that X contains a closest pair, thus
H(X) contains at least one edge (Lemma 7). Our goal in this section is to choose a nonempty subset ofX
of size at most |X|/2 The general idea is to build a non-empty matching onH(X) and choose exactly one
node per each matched pair. We say that nodes chosen by our procedure survive. For further applications,
for each node v which survives the procedure, we store its removed counterpart in the local variable p(v).

Algorithm 2 finds a matching in a proximity graph H(X) build by Alg. 9 by connecting each pair of
neighbors (v, w) such that v is the local minimum (its ID is smaller than IDs of its neighbors) and v has
the smallest ID among neighbors of w in H(X) (see an example on Fig. 3).
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Algorithm 2 Handshake(X) . Remark: an execution at v ∈ X
1: Each v ∈ X executes ProximityGraphConstruction(v) using (N,κ)-wss S. . see Lemma 7
2: if Ev = ∅: v does not participate in further steps.
3: minv ← minu∈Ev{ID(u)}
4: Execute S, where:

if ID(v) < minv: v transmits the message m = 〈handshake, ID(v),minv〉 . v is a local minimum;
if ID(v) > minv: v transmits the message m = 〈match, ID(v),minv〉

5: if ID(v) < minv and v received the message 〈match,minv, ID(v), 〉 then
6: p(v)← minv
7: status(v)← survived
8: else
9: status(v)← eliminated

10: v is switched off

Lemma 8. Let X ⊆ V be a subset of a network. Let Y ⊆ X be the set of nodes that survived
Handshake(X) (see line 7 of Algorithm 2). If there exists a closest pair in X then 1 ≤ |Y | ≤ |X|/2.
Moreover, for each v ∈ Y , p(v) ∈ X \ Y . The round complexity of Handshake procedure is O(logN).

6 Token Traversal Algorithm

In this section we describe our token traversal algorithm. As it gives also immediate solution to the
broadcasting problem, we present the algorithm in terms of broadcasting task.

At the beginning of the main algorithm (Alg. 3), the source s wakes up all its neighbors (which
become its children). Then, the general idea is that each node v, after receiving the token, learns its
children (nodes awaken by v) using FullSelection (Alg. 5). As our time bound for FullSelection(v,X) for
v ∈ L1 is O(log2N + |children(v)| logN), this approach guarantees time O(n log2N) (and it might be
Ω(n log2N) if |L1| = Ω(n)). In order to achieve better bound, the nodes from L1 learn their children in
a different way. After the initial transmission by s, it learns the whole set of its neighbors Ns = L1, using
FullSelection. Then, s allows each v ∈ Ns = L1 to transmit separately which wakes up all elements of
L2 and set the parent from L1 for each of them. The goal of HandleSecondLayer is to select all elements
of L2, allow each of them to transmit separately which in turn gives information to each w ∈ L1 about all
its children. As mentioned earlier, we do not want to implement this task by calling FullSelection for each
v ∈ L1, as it would increase time complexity to the order of n log2N . We postpone the exact description
of HandleSecondLayer and discuss the remaining part of the algorithm and its subroutines. After handling
the second layer, a standard token traversal algorithm starts from the source (Alg. 4), where each node
from {s} ∪ L1 already knows its children, while each other node v 6∈ {s} ∪ L1 learns children(v) using
FullSelection.

Algorithm 3 contains pseudo-code of our main algorithm. Then, procedures called in the main algo-
rithm are presented in the top-down fashion.
Remark In pseudo-codes, we use informal set theoretic operations, e.g., A ← X \ Y . Such notation
describes local decisions of nodes and means that each node x knows whether it belongs to X and Y and
therefore it can determine if it belongs to A.

Algorithm 3 BroadcastWithToken(s)
Initially for each node u parent(u) = ⊥ and layer(v) = 0.

1: Transmit 〈hello, s〉
2: FullSelection(s, L1)
3: HandleSecondLayer
4: TokenTraversal(s)

if a station w receives 〈hello, v〉 and parent(w) = ⊥ then
parent(w)← v
layer(w)← layer(v) + 1
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Algorithm 4 TokenTraversal(v)
1: Transmit 〈hello, v〉
2: if layer(v) > 1 then
3: FullSelection(v, {w | parent(w) = v})
4: for each w ∈ children(v) do
5: Transmit 〈token, w〉. . pass the token to w
6: Wait until receiving a message 〈release, v〉. . Token is back at v
7: Transmit 〈release, parent(w)〉. . pass the token to the parent of v

In the following, we describe the main subroutine FullSelection called at each node v 6∈ L1. FullSelection(v,X)
repeats procedure PartialSelection several times, until all elements of X are selected, i.e., each of them
transmits a message received by v. An execution of PartialSelection(v,X) results in reporting r > 0 ele-
ments ofX inO(r logN) rounds, providedX is not empty. In the case thatX is empty, PartialSelection(v,X)
ends in O(logN) rounds when v 6∈ {s} ∪ L1 and in O(log2N) rounds otherwise.

The procedure PartialSelection (Alg. 6) executes Handshake several times. (An alternative for partial
selection might be e.g. by (N, k, k/2)-selectors [6] for k = 2, 4, 8, . . . , 2logn. However, no constructive
solutions with optimal size are known for them.) Handshake(X) is sparsifies the set X . As Handshake is
always executed on X ⊆ Nv for a reference node v, X is contained in a ball of radius 1. Let m = |X|.
If m is smaller than χ(1/2, 2), then each element of X transmits separately (see line 6 of Algorithm 6).
Otherwise, there exists a closest pair of nodes in X , and some elements are removed from X such that the
size of X after the execution is in the range [1,m/2] (see Lemma 8). In this way at least one element of
X is selected in O(log |X|) executions of Handshake.

However, our goal is to select one element per each execution of Handshake on the average. Fortu-
nately, each node v which survives the ith execution of Handshake has associated the unique element p(v)
which has survived the first i − 1 executions of Handshake and has not survived the ith execution (see
Lemma 8). The node v stores such elements in P (v).

Algorithm 5 FullSelection(v,X) . v learns all elements of X

1: Y ← X , w ← v, children(v)← ∅
2: while w 6= ⊥ do
3: w ← PartialSelection(v,X)
4: Y ← P (w) . if w 6= ⊥, w broadcasts information about P (w) in |P (w)|+ 1 rounds
5: X ← X \ Y
6: children(v)← children(v) ∪ Y . v learns Y in step 4

Algorithm 6 PartialSelection(v,X) . Assumption: X ⊆ Nv

1: if v 6∈ L0 ∪ L1 then . L0 = {s}, L1 = Ns
2: if EmptinessTest(v, parent(v), parent(parent(v)), X): return ⊥
3: r ← 1
4: for each w ∈ X: P (w)← ∅
5: repeat
6: Execute (N, k)-ssf on X for k = dχ(1/2, 1)e+ 1.
7: if v received a message from some node w during step 6 then
8: return w . i.e., v transmits a message which ends execution of PartialSelection
9: Handshake(X)

10: for each w: if w survived Handshake(X): P (w)← P (w) ∪ {p(w)}
11: for each w: if w did not survive Handshake(X): w remove itself from X
12: r ← r + 1
13: until r = logN . until r = log n if n is known
14: return ⊥

Lemma 9. 1. Assume thatX ⊆ Nv is not empty. Then, PartialSelection(v,X) is finished afterO(r logN)
rounds for 0 < r ≤ log n and v has received a message from w ∈ X such that P (w) ⊆ X and
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|P (w)| = r.
2. PartialSelection(v,X) for X = ∅ works in O(logN) rounds for v 6∈ L0∪L1 and in O(log2N) rounds
for v ∈ L0 ∪L1 (O(log n) · (logN)) when n is known). Moreover, v is aware of the fact that X = ∅ after
the execution of PartialSelection(v,X) for X = ∅.

To summarize the above observations we state the following properties of FullSelection.

Lemma 10. Let X ⊆ Nv. Then, v knows all elements of X after an execution of FullSelection(v,X).
Moreover, each u ∈ X transmits uniquely at some round of FullSelection(v,X). The execution time is
O(|X| logN + f(N)), where f(N) = O(logN) if v 6∈ L0 ∪ L1 and f(N) = O(log2N) otherwise. (If
n is known, then f(N) = O(log2N) is replaced with f(N,n) = O((logN) · (log n)).)

Handling the second layer

Recall that each node from L0 ∪ L1 is the only transmitter in some round during steps 1. and 2. of the
main algorithm (Alg. 3). The nodes from L2 are awaken in this way and they know their parents (note
that parent(v) ∈ L1 for each v ∈ L2).

Now, we describe HandleSecondLayer subroutine which assures that each node v ∈ L2 is a unique
transmitter in some round (and it transmits ID of its parent in each transmission). In this way the nodes
from L1 learn about their children.

To achieve the above described goal, we repeat the following procedure. First, the leader v in L2 is
elected and, all elements of Nv ∩ L2 are selected using FullSelection(v,Nv ∩ L2). Then, all selected
elements are removed from consideration and the process is repeated until no unselected elements in L2

remain. As the consecutive leaders are in distance > 1 to each other, this process should finish after at
most χ(1, 2) elections of the leader. More formal presentation of this idea is given in Alg. 7.

Algorithm 7 HandleSecondLayer
1: L← L2 . Initially, L is the second layer
2: c← χ(1, 2)
3: for i=1,2,. . . ,c do
4: v ← Leader(L)
5: v transmits 〈leader, v〉
6: X ← {w |w received the message leader}
7: FullSelection(v,X)
8: L← L \X

Now, we provide an efficient implementation of leader election in line 4 of Alg. 7. First, define the
problem that needs to be solved. The leader election problem is solved for a given non-empty set of nodes
X if exactly one element x ∈ X has the status leader. (Observe that we do not require that all elements
of X know ID of the node with status leader.)

The idea of the leader election procedure (Alg. 8) is to repeat Handshake several times in order to
sparsify the input set X , as in PartialSelection. This way, some node w ∈ X will be the only transmitter
at some round. The problem is that the unique transmitter w might be unaware of its uniqueness. If
all elements of X were included in Nv for a distinguished node v, then v would confirm reception of a
message from w and inform in this way w (and all elements of X) about the ID of the leader.2 Therefore,
we cannot apply PartialSelection directly. Instead, we use the fact that X ⊆ L2 and each node v ∈ X
knows parent(v) ∈ L1. We assure that each node v ∈ L1 that hears its child from w ∈ L2 tries to report
it to the source. If the source node receives such message at some time, it chooses w to be the leader and
passes this information through v = parent(w) to w. This is guaranteed to happen when w was the unique
transmitter in L2, and it will happen eventually for some w ∈ L2 (see Fig. 4(a)-(b)).

2Note that v can receive a message from some node x even when x is not the unique transmitter. However, as v “selects” the
leader and announces its choice, this does not cause any problem with uniqueness of the leader.
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Algorithm 8 Leader(L) . Assumption: parent(x) ∈ L1, x ∈ L2 for each x ∈ L
1: leader(v)← false for all v ∈ L
2: elected← false . elected is a local variable stored at s
3: for i = 1, 2, . . . , logN do . i = 1, 2, . . . , log n when n is known
4: Execute (N, k)-ssf for k = dχ(1/2, 2)e+ 1, where each transmission is followed by:

Round 1:
if w ∈ L1 received a message from its child x ∈ L2: w transmits 〈leader-proposal, x, w〉
Round 2:
if elected=false and s received 〈leader-proposal, x, y〉:
s transmits 〈leader-elect, x, y〉; elected← true

Round 3:
if w ∈ L1 received a message 〈leader-elect, x, w〉: w transmits 〈leader-elect, x〉.

5: if x ∈ L received a message 〈leader-elect, x〉 in Round 3: leader(x)← true
6: Handshake(L)
7: L← nodes from L which survived Handshake(L)

Proposition 1. Let L ⊆ L2 be a set of nodes such that parent(parent(x)) = s and parent(x) ∈ L1 ∩Nx

for each x ∈ L. Then, Leader(L) solves the leader election problem on L in O(log2N) rounds if n is
unknown and in O((logN)(log n)) rounds otherwise.

Given the leader election procedure, we can prove that each node from L2 is the only transmitter in
some round of HandleSecondLayer. This in turn gives information to nodes from L1 about their children.

Lemma 11. Assume that parent(v) = s for each v ∈ L1 and parent(u) ∈ L1 ∩ Nu for each u ∈ L2.
Then, each u ∈ L2 is the only transmitter in some round of an execution of HandleSecondLayer. Moreover,
HandleSecondLayer works in O((n + logN) logN) rounds if n is unknown and in O(n logN) rounds
otherwise.

Theorem 1. The BroadcastWithToken algorithm solves weak connectivity broadcast in the ad hoc SINR
model in O(n logN) rounds if n is known and in O(n logN + log2N) otherwise.

Proof. Lemmas 10 and 11 imply that steps 1 – 3 of the algorithm are finished in time stated in the theorem.
Then, the TokenTraversal algorithm builds a spanning tree of a network, the token is passed once over
each edge of this tree in each direction which altogether takes O(n) rounds. Moreover, for each node
v 6∈ L0 ∪ L1, FullSelection(v,X) is executed when v receives the token for the first time, for X equal to
the set of children of v. An execution of FullSelection(v,X) takes O((|X|+ 1) logN) rounds, where X
is the set of selected elements. As each w ∈ V \ (L0 ∪ L1) is only once an element of X in an execution
of FullSelection(v,X) (when v = parent(w)), the overall complexity of all executions of FullSelection
during TokenTraversal(s) is O(n logN).

7 Lower bound and extensions
Lower bound. Employing a similar approach as in [7] we construct a network of linear diameter such
that it takes at least Ω(n logN) rounds to broadcast a message.

Theorem 2. For any deterministic algorithm A and n < N/6, there exists a network N of size 3n + 1
such that it takes Ω(n logN) rounds before A completes the broadcast in N.

Randomized Algorithm. In [12] the authors proposed a randomized algorithm that solves broadcast in
time O(n log2 n) and a lower bound of Ω(n). Our result fits into the scenario presented therein provided
each node picks a random ID in range [1, n3] and performs the deterministic algorithm, which works as
long as the IDs are different (this is true with high probability). Thus, our solution is O(n log n).
Constructive solution. We need (N, k)-wss only for constant values of parameter k. Thus, by Lemma 3,
the actual algorithm for fixed N can be determined in time polynomial with respect to N .
Other extensions. Extensions regarding optimization of local memory and acknowledged vs. non-
acknowledged broadcast are deferred to the full version, see Appendix.
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Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014,
pages 357–366. ACM, 2014.

[24] T. Jurdzinski, D. R. Kowalski, and G. Stachowiak. Distributed deterministic broadcasting in uniform-
power ad hoc wireless networks. In L. Gasieniec and F. Wolter, editors, FCT, volume 8070 of Lecture
Notes in Computer Science, pages 195–209. Springer, 2013.

[25] T. Jurdzinski, D. R. Kowalski, and G. Stachowiak. Distributed deterministic broadcasting in wireless
networks of weak devices. In F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg, editors,
ICALP (2), volume 7966 of Lecture Notes in Computer Science, pages 632–644. Springer, 2013.

[26] E. Kantor, Z. Lotker, M. Parter, and D. Peleg. The minimum principle of SINR: A useful discretiza-
tion tool for wireless communication. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 330–349, 2015.

[27] E. Kantor, Z. Lotker, M. Parter, and D. Peleg. The topology of wireless communication. J. ACM,
62(5):37:1–37:32, Nov. 2015.

[28] T. Kesselheim. A constant-factor approximation for wireless capacity maximization with power
control in the sinr model. In D. Randall, editor, SODA, pages 1549–1559. SIAM, 2011.

[29] T. Kesselheim. Dynamic packet scheduling in wireless networks. In D. Kowalski and A. Panconesi,
editors, PODC, pages 281–290. ACM, 2012.
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Appendix

A Extensions and conclusions

Optimizing Size of the Local Memory. In naive implementation of ProximityGraphConstruction proce-
dure (see Algorithm 9) the local memory in each node is large. Nodes have to perform lookups in the wss,
and a naive approach to this is that each node holds the whole selector, which is of size Θ(N logN). We
can reduce the size of local memory to O(log2N) in the following way. Each node holds only its pattern
of transmissions, which results from the witnessed strong selector; its size is O(logN). In the exchange
phase of Algorithm 9 each node sends its pattern of transmissions (a bit string of length O(logN)). Thus,
in edge removal phase each node has at most O(logN) “candidates” for neighbors and their transmis-
sion patterns, which is sufficient to perform edge removal. Thus, the total size of internal memory is
O(log2N).

The amount of memory needed in TokenTraversal (see Algorithm 4) is O(n logN) bits due to the
fact that a node can have O(n) children. A node learns its children by FullSelection (Algorithm 5) in a
sequential manner, one by one. This allows to form a kind of linked list of the children, such that each
node remembers only the ID of the next node in the chain, reducing the amount of required memory to
O(logN).
Acknowledged vs non-acknowledged broadcast. The algorithm presented in the paper works under
the acknowledged broadcast model. (That is, for the broadcast problem, we require that an algorithm
ends its execution when all nodes are aware of the fact that the broadcast message is delivered to the
whole network.) In the case of non-acknowledged broadcast (i.e., an algorithm ends just at the moment
of delivery of the broadcast message to all nodes) we can use a standard doubling technique, i.e., execute
the algorithm for n = 1, 2, 4, . . . obtaining O(n logN) round complexity. In this way we get rid of the
additive log2N term which might be ω(n logN) if N is super-exponential wrt n.

Our results could be easily generalized to the bounded-growth metric space with the same asymptotic
complexity bounds.
Conclusions. We presented a novel implementation of token traversal in weakly-connected ad hoc wire-
less networks under the uniform-power SINR model, leading to asymptotically optimal deterministic
spanning tree and broadcast algorithm (see also the lower bound proved in this work) and nearly optimal
randomized solution improving the one in [12]. The class of weakly-connected networks is the widest
possible class, therefore our solution is on one hand most general, but on the other hand there are net-
works on which ad hoc communication is expensive by itself. The token traversal occurred to be efficient
for spanning tree and broadcast problem, therefore we conjecture that it could play a substantial role in
algorithmics in general class of ad hoc wireless networks.

B Auxiliary figures
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(c) A local minimum v survives if v
is the smallest neighbor of minv .

Figure 3: An illustration of the handshake procedure (Algorithm 2).
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Figure 1: If |X| ≥ cα,β , then interference from X prevents reception of the message from v1 at v in
Round 1 (part (a)) or reception of the message from v2 at v1 in Round 2 (part (b)). Otherwise, if |X| <
cα,β , then v receives messages from each node from X in the execution of the (N, cα,β)-ssf in step 5.

c · dmindmin

uw

(a) Exchange phase: edges connect v
with elements of Uv . Some of them
can be “removed” in Edge removal
phase.

c · dmindmin

uw

(b) Edge removal phase: If v hears
some node, it can “remove” all others
that transmitted in that round.

c · dmindmin

uw

(c) A possible result of the proxim-
ity graph construction. Only a pair
of closest nodes is guaranteed to be
connected by an edge.

Figure 2: An illustration of the proximity graph construction (Algorithm 9). The constant c corresponds
to κ0 from Lemma 4 and dmin < 1/2 is the smallest distance between nodes in the whole set X .
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Figure 5: A chain-network used in Ω(n logN) lower bound. Each link is of length 1.
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(a) After sufficient reduction of den-
sity of L ⊆ L2, some nodes have
possibility to transmit uniquely in
L. They are heard by their parents
in L1 which pass the information to
the source.

s

L2 L1

X
v

(b) When the source receives a mes-
sage from the parent of a node
v ∈ X , it chooses v as the
new leader, informs about it by
sending a message through its par-
ent p(v). All not-yet-selected el-
ements of L2 within distance 1 to
the new leader v are handled by
FullSelection(v,X).

s

L2 L1

X
v

(c) Each node in X trans-
mits uniquely during
FullSelection(v,X) , on a dis-
tance 1, so it can be heard by its
parent in L1.

Figure 4: An illustration of the leader election and handling the second layer.

C Proofs of technical lemmas

Proof of Lemma 2

Proof. The proof is by probabilistic method. Let Si be a set obtained by including each v ∈ [N ] with
probability 1/k. Moreover, for each i and v, choose whether v ∈ Si independently of other choices. There
are

r =

(
N

k

)
· k · (N − k) (2)

possible tuples (X,x, y) such that |X| = k, x ∈ X, y 6∈ X and X ⊂ [N ], y ∈ [N ] \X , x ∈ X . For each
i and a tuple (X,x, y), the event that X ∩ Si = {x} and y ∈ Si occurs with probability

p =
1

k
·
(

1− 1

k

)k−1

· 1

k
= Ω(1/k2). (3)

The sequence S1, S2, . . . , Sm is a (N, k)-wss when, for each tuple (X,x, y) as above, the event X ∩Si =
{x} and y ∈ Si occurs for some index i ≤ m. The probability that this event does not occur for a tuple
(X,x, y) for all indices i ≤ m is at most (1− p)m. The probability that there exists a tuple (X,x, y) for
which the event X ∩ Si = {x}, y ∈ Si does not occur for all i ≤ m is smaller or equal to

r(1− p)m ≤ re−mp =

(
N

k

)
k(N − k)e−mp ≤ Nk+2e−mp = eΘ(k logN)−mp,

where r and p are defined in (2) and (3) respectively. By choosing large enoughm = Θ(k3 logN), we get
a nonzero probability of obtaining (N, k)-wss. Thus, such a selector of size m = Θ(k3 logN) exists.

Proof of Lemma 3

Proof. Let Gk = {(X,x, y) : X ⊆ [N ], |X| = k, x ∈ X, y 6∈ X}. We say that S ⊆ [N ] satisfies
(X,x, y) iff X ∩ S = {x} and y ∈ S. Observe that S is a (N, k)-wss if and only if, for each (X,x, y) ∈
Gk, there exists S ∈ S that satisfies (X,x, y) that is S ∩X = {x} and y ∈ S. The fact we exploit in the
construction is that, for a fixed G̃ ⊆ Gk, a random set Si ⊆ [N ] constructed as in the proof of Lemma 2
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(where each element of [N ] is put to the set Si with probability 1/k), satisfies a fraction of Ω(1/k2) of
triples in G̃ in expectation.

We construct the sets of the selector iteratively. Initially, S = ∅, G̃ = Gk, i = 0, and while G̃ 6= ∅ we
perform the following routine for consecutive is:

• Si ← ∅

• For z = 1, 2, . . . , N :

– Let Y (z) be the expected number of triples in G̃ satisfied by Si∪{z}, andN(z) be the expected
number of triples in G̃ satisfied by Si, where the expected value is taken over random choices,
where each element of [z + 1, N ] is independently added to Si with probability 1/k.

– If Y (z) ≥ N(z) then Si ← Si ∪ {z}.

• S ← S ∪ {Si}, G̃← G̃ \ {triples satisfied by Si}

• i← i+ 1

Since max{Y (z), N(z)} ≥ E[X] = Ω(1/k2)|G̃|, where X is the expected number of triples from
G̃ satisfied by a random set (cf. Proof of Lemma 2), after l repetitions of the above procedure, we
have no more than (1 − O(1/k2))l|Gk| triples (in G̃) unsatisfied by all sets S1, . . . , Sl. Since |Gk| =(
N
k

)
k(N − k) = O(Nk+2), there are no unsatisfied triples in G̃ after l = O(k3 logN) repetitions of

the above procedure, and we obtain an (N, k)-wss S = (S1, . . . , Sl). The total time complexity of the
algorithm is O(k4 logN · f(N)), where f(N) is a function determining time needed to compute Y (z)
and N(z). In order to confirm that Y (z) and N(z) might be computed in time NO(k), we observe that
probability that a given triple (X,x, y) is satisfied by Si or Si ∪ {z} can be computed in time NO(1).
Given the triple (X,x, y) and a fixed value of z, the probability that the triple (X,x, y) will be satisfied
by Si depends solely on the facts whether

• x, y are in Si at the current stage, whether

• x < z, x = z or x > z,

• y < z, y = z or y > z

• the size of X ∩ Si is 0, 1 or larger than 1.

Thus, time complexity isNO(k) as claimed. For more details regarding this technique, we refer to [9].

Proof of Lemma 4

Proof. Let d ← d(u, v). As (u, v) is a closest pair, d(x, y) ≥ d for each x 6= y, x, y ∈ A. Let Ai be
the elements of A located in B(v, (i + 1)d) \ B(v, id) for natural i. The fact that the distance between
each pair of nodes is at least d implies that interference at v from the elements of Ai is O(i · 1

(id)α ), since
|Ai| = O(i) and d(v, x) ≥ id for each x ∈ Ai. Let κ0 be a fixed constant. Then, interference at v from
all nodes outside of B(v, κ0d) is

O

∑
i≥κ0

i · 1

(id)α

 = O

 1

dα

∑
i≥κ0

1/iα−1

 .

The assumption α > 2 implies that
∑

i≥0 1/iα−1 = O(1) and therefore, for each constant c we can
guarantee that 1

dα ·
∑

i≥κ0 1/iα−1 < c by choosing large enough κ0. As d(u, v) ≤ 1/2, the lemma holds
for κ0 adjusted to such c that

1
(1/2)α

N + c
≥ β.
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Proof of Lemma 5

Proof. If X is non-empty then either v receives a message during the execution of (N, cα,β)-ssf if |X| <
cα,β (step 5) or the interference from X prevents at least one of the transmissions v1 → v, v2 → v1

(Rounds 1 and 2). (The latter fact follows from the choice of the constant cα,β and the assumption
X ⊆ Nv which implies that X is included in B(v, 2) and B(v1, 2).) In both cases the algorithm returns
false: in line 6 in the former case and in line 9 in the latter case.

Otherwise, if X is empty, the transmissions in Rounds 1, 2, 3 succeed and v reports the emptiness of
X .

The complexity of (N, cα,β)-ssf dominates the complexity of the routine, which is O(c2
α,β logN) =

O(logN) by Lemma 1.

Proof of Lemma 6

Proof. The result follows from the fact that a station can hear only as many different stations as the number
of rounds it listened. Thus the value of p in the algorithm is at most as large as the length of exchange
phase, that is |T |.

Proof of Lemma 7 First, we provide a pseudo-code of the considered algorithm:

Algorithm 9 ProximityGraphConstruction(v)
1: Ev ← ∅
2: S← (N,κ)-wss common to all nodes. . κ is the constant from Corollary 1

Exchange phase.
3: Execute S with message containing ID(v).
4: Let Uv be the nodes which successfully delivered a message to v during the exchange phase.

Edge removal phase.
5: Cv ← Uv
6: for each u,w ∈ Uv do
7: if in some round u and w transmitted and v heard u then . lookup in the schedule S
8: Cv ← Cv \ {w}

Confirmation phase.
9: if |Cv| > κ then

10: Cv ← ∅
11: for each u ∈ Cv do
12: Execute S with 〈v, u〉 as the message.
13: for each message 〈w, v〉 received during the confirmation phase do
14: if w ∈ Cv then
15: Ev ← Ev ∪ {w}

Below, the formal proof follows.

Proof. Let X ⊆ V be the subset of nodes executing the procedure. First, we need to assure that each
closest pair in X is connected by an edge in H . Let u,w ∈ X be a closest pair. We show that u ∈ Ew
and w ∈ Eu after an execution of ProximityGraphConstruction on X .

By Corollary 1 we know that if u is the only transmitter among κ nodes closest to w (including w)
then w receives the message. By the definition of the schedule S which is a (N,κ)-wss we know that a
round satisfying this condition exists in S. Thus, after Exchange phase, u and w have each other in the set
of candidates Uu/Uw (see Fig. 2(a)). Since u,w is a closest pair, it is impossible that u receives a message
from x 6= w in a round in which w transmits a message (since β > 1, only the message from the closest
transmitter can be received). Thus, w (u, resp.) belongs to Cu (Cw, resp.) after Edge removal phase.

A node can also purge the candidate set Cv during the confirmation phase, if the set of candidates
contains more than κ nodes. However, as S is (N,κ)-wss, if u,w ∈ X is a closest pair then Cu and Cw
are of size at most κ. Indeed, let U denote the set of κ nodes closest to u (including u). Then, for any node
ufar 6∈ U which is not among κ closest nodes to u, there is a round in S in which w transmits uniquely in
U and also ufar transmits by the witnessed strong selection property of S. Thus, ufar is eliminated from
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set Cu in Edge removal phase, as well as any other node not in U . So, the set of candidates Cu for u is a
subset of U , thus its size is at most κ (see Fig. 2(b)).

It is clear that the degree of resulting graph is at most κ = O(1). The round complexity of the
procedure is at most (κ+ 1)|S| = O(logN).

Proof of Lemma 8

Proof. Assume that there exists a closest pair u,w ∈ X . By Lemma 7, the set of edges of H(X) is
non-empty in this case.

First, we show that |Y | > 1. Let u be the node with the smallest ID among nodes with non-zero
degree in H(X). Let w = minu. Then, minw = u and u survives as the conditions checked in step 5 is
satisfied for u.

Next, observe that y survives iff the node x = miny satisfies y = minx and x does not survive. Thus,
the number of nodes from X which do not survive is not smaller than Y and therefore |Y | ≤ |X|/2.
Moreover x = p(y) belongs to X \ Y when y survives.

The round complexity of Handshake(X) is O(logN) which follows from the optimal size of wit-
nessed strong selectors and complexity of ProximityGraphConstruction (Lemma 7).

Proof of Lemma 9

Proof. First, assume that X is not empty. Let Xi be the value of X after the ith repetition of the repeat-
loop, X0 = X . If |Xi| ≥ χ(1/2, 1) then, by Lemma 8, 1 ≤ |Xi+1| ≤ |Xi|/2. If |Xi| < χ(1/2, 1) then
all nodes transmit separately in line 6 and are heard by v. Thus, the node w is returned by the algorithm
after r repetitions of the repeat-loop such that |P (w)| = r. Thus, item 1. of the lemma holds.

Second, assume that X = ∅. If X = ∅ and v ∈ L0 ∪L1 then v cannot run effective test of emptiness
for X , thus it executes logN iterations of the Handshake and learns that X is empty. Each execution of
Handshake takes O(logN) rounds, thus the total round complexity is O(log2N). Otherwise, if X = ∅
and v 6∈ L0 ∪ L1 then v learns that X is empty with EmptinessTest by Lemma 5.

Proof of Proposition 1

Proof. Lemma 8 implies that the size of L is reduced at least twice and it remains greater than zero after
each execution of Handshake(L), as long as there is a closest pair in L. As L is included in a ball of radius
2, a closest pair in L exists for sure, provided |L| > χ(1/2, 2). Thus, after i = O(log n) repetitions of
Handshake(L), we have 0 < |L| ≤ χ(1/2, 2). Then, each element of still non-empty L transmits uniquely
in an execution of (N, k)-ssf (see line 4 of Alg. 8).

When u transmits uniquely in L2, it is heard by its parent, which transmits a leader-proposal message,
which is heard by the source. After reception of the leader-proposal message, s transmits back the leader-
elect message (and sets the local variable elected to true) assuring that the unique leader is chosen.

Proof of Lemma 11

Proof. Proposition 1 guarantees that at most χ(1, 2) leaders are elected in the main loop, such that each
v ∈ L2 is either a leader or a neighbor of some leader. Every node non-leader u ∈ L2 is selected
by some leader during FullSelection and, by Lemma 10, u transmits uniquely in L2, and is heard by
parent(u) ∈ L1. Each node u ∈ L2 is handled only once by some leader v ∈ L2 during FullSelection and,
for each leader, the procedure takes O(|X| logN + log2N) rounds, where X is the set of nodes handled
by v. Thus, the total round complexity of HandleSecondLayer is O(χ(1, 2) · log2N + |L2| logN) which
implies the claimed result, since χ(1, 2) = O(1) and |L2| = O(n).
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